MINI-SCREEN® System
Safety Light Screen System Instruction Manual
For Systems Using Control Module MSDINT-1 (Trip Output) or MSDINT-1L2 (Latch Output)
with Removable Terminal Blocks

MINI-SCREEN® Features

- An optoelectronic point-of-operation guarding device for production machinery
- Compact package for smaller production machines
- Creates a curtain of synchronized, modulated infrared sensing beams from 4” to 4’ high (in 12 lengths)
- Control module may be bolted directly to enclosure back plate or mounted on standard 35 mm DIN rail
- Removable terminal blocks
- Easily configured for floating blanking (two-beam), and/or auto power-up
- Remote TEST input terminals for simulating a blocked condition (MSDINT-1, only)
- Diagnostic Display visible through module cover
- LEDs on control module and receiver indicate system status and emitter/receiver alignment status
- “Diverse redundant” controller design provides a high level of control reliability
- FMEA (Failure Mode and Effects Analysis) tested to ensure control reliability
- Replaceable redundant output safety relays for enhanced control reliability
- Highly immune to EMI, RFI, ambient light, weld flash, and strobe light
- Vibration-tolerant factory burned-in emitter and receiver circuitry for toughness and dependability; anti-vibration mounts provided with sensors
- Emitters and receivers are available with black or safety yellow finish and with sensing range of either 9 m (30’) or 18 m (60’)
- Two control module models available:
 - MSDINT-1 with trip output
 - MSDINT-1L2 with latch output

Section Contents

Section 1 MINI-SCREEN System IntroductionPage 4
Section 2 Overview of MINI-SCREEN OperationPage 7
Section 3 System Installation and AlignmentPage 14
Section 4 Operating InstructionsPage 36
Section 5 Troubleshooting and MaintenancePage 38
Section 6 Alignment and CheckoutPage 42

BANNER
the machine safety specialist
9714 10th Avenue North • Minneapolis, MN 55441
Phone: 763.544.3164 • http://www.bannerengineering.com
Email: sensors@baneng.com

Printed in USA
P/N 44895EDC
Important ... read this page before proceeding!

In the United States, the functions that Banner MINI-SCREEN™ Systems are intended to perform are regulated by the Occupational Safety and Health Administration (OSHA). However, whether or not any particular MINI-SCREEN System installation meets all applicable OSHA requirements depends upon factors that are beyond the control of Banner Engineering Corp. These factors include the details of how the MINI-SCREEN System is applied, installed, wired, operated, and maintained.

Banner Engineering Corp. has attempted to provide complete application, installation, operation, and maintenance instructions. In addition, we suggest that any questions regarding application or use of MINI-SCREEN Systems be directed to the factory applications department at the telephone number or addresses shown at the bottom of this page.

Banner MINI-SCREEN Systems can guard against accidents only when they are properly installed and integrated into the machine, properly operated, and properly maintained. See Section 3 of this manual for installation procedures, considerations, and precautions. See Sections 4 and 5 for operating and maintenance information. It is the responsibility of the purchaser and/or user to apply this MINI-SCREEN System in full compliance with OSHA regulations.

In addition to OSHA regulations, several other organizations provide informational material on the use of machine guard devices. The user is referred to the American National Standards Institute (ANSI), the Robotics Industries Association (RIA), the American Metal Stamping Association (AMSA), and others. Banner Engineering Corp. makes no claim regarding a specific recommendation of any organization, the accuracy or effectiveness of any information provided, or the appropriateness of the provided information for a specific application.

The user has the responsibility to ensure that all local, state, and national laws, rules, codes, and regulations relating to the use of this machine guarding system in any particular application are satisfied. Extreme care is urged to ensure that all legal requirements have been met and that all installation and maintenance instructions contained in this manual are followed.

Caution!!

Banner MINI-SCREEN Systems are for use only on machinery that can be stopped immediately after a stop signal is issued. They may be used with part-revolution clutched machines that have the ability to stop at any point in their stroke. Under no circumstances may the MINI-SCREEN System be used on full-revolution clutched machinery. Banner MINI-SCREEN Systems may not be used as tripping devices to initiate machine motion (PSDI applications) on mechanical power presses, per OSHA regulation 29 CFR 1910.217.

Applications and Limitations of MINI-SCREEN® Systems

MINI-SCREEN Systems are typically used in the following applications:

- Hydraulic and pneumatic power presses
- Molding presses
- Automated production equipment

MINI-SCREEN Systems may NOT be used with the following machinery:

- Any machine that cannot be stopped immediately after a stop signal is issued, such as single stroke (also known as "full-revolution") clutched machinery.
- Any machine with inadequate or inconsistent machine response time and stopping performance.
- Any machine that ejects materials or component parts through the defined area.
- MINI-SCREEN Systems may not be used in any environment that is likely to adversely affect photoelectric sensing system efficiency. For example, corrosive chemicals or fluids or unusually severe levels of smoke or dust, if not controlled, may degrade the efficiency of Banner MINI-SCREEN Systems.

Banner MINI-SCREEN Systems may not be used as tripping devices to initiate machine motion (PSDI applications) on mechanical power presses, per OSHA regulation 29 CFR 1910.217.

U.S. Standards Applicable to Use of MINI-SCREEN® Systems

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI B11 Standards</td>
<td>Safeguarding of Machine Tools</td>
</tr>
<tr>
<td>ANSI/RIA R15.06</td>
<td>Safety Requirements for Robot Systems</td>
</tr>
<tr>
<td>NFPA 79</td>
<td>Electrical Standard for Industrial Machinery</td>
</tr>
</tbody>
</table>

See pages 64 and 65 for information on these and other applicable standards, and where to acquire copies.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important Information</td>
<td>2</td>
</tr>
<tr>
<td>1. MINI-SCREEN System Introduction</td>
<td>4</td>
</tr>
<tr>
<td>1.1 MINI-SCREEN Components and Kits</td>
<td>6</td>
</tr>
<tr>
<td>2. Overview of MINI-SCREEN System Operation</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Blank/Blanking</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Auto Power-up</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Lockout Conditions and Key Resets</td>
<td>8</td>
</tr>
<tr>
<td>2.4 Operating Status Indicators</td>
<td>9</td>
</tr>
<tr>
<td>2.5 Diagnostic Indicator</td>
<td>11</td>
</tr>
<tr>
<td>2.6 Output Relay Operation</td>
<td>12</td>
</tr>
<tr>
<td>2.7 Control Reliability: Redundancy and Self-Checking</td>
<td>13</td>
</tr>
<tr>
<td>2.8 Remote Test Input</td>
<td>13</td>
</tr>
<tr>
<td>3. System Installation and Alignment</td>
<td>14</td>
</tr>
<tr>
<td>3.1 Appropriate Application</td>
<td>14</td>
</tr>
<tr>
<td>3.2 Mechanical Installation Considerations</td>
<td>15</td>
</tr>
<tr>
<td>3.2.1 Separation Distance</td>
<td>15</td>
</tr>
<tr>
<td>3.2.2 Hard Guarding</td>
<td>17</td>
</tr>
<tr>
<td>3.2.2.1 Pass-Through Hazards</td>
<td>18</td>
</tr>
<tr>
<td>3.2.3 Emitter and Receiver Orientation</td>
<td>19</td>
</tr>
<tr>
<td>3.2.4 Adjacent Reflective Surfaces</td>
<td>20</td>
</tr>
<tr>
<td>3.2.5 Use of Corner Mirrors</td>
<td>20</td>
</tr>
<tr>
<td>3.2.6 Installation of Adjacent Sensor Pairs</td>
<td>21</td>
</tr>
<tr>
<td>3.3 Mounting Procedure</td>
<td>22</td>
</tr>
<tr>
<td>3.4 Controller Module Configuration</td>
<td>25</td>
</tr>
<tr>
<td>3.5 Electrical Hookup and Checkouts</td>
<td>26</td>
</tr>
<tr>
<td>3.5.1 Key Reset Switch Hookup</td>
<td>26</td>
</tr>
<tr>
<td>3.5.1.1 Latch Reset Switch Hookup</td>
<td>26</td>
</tr>
<tr>
<td>3.5.2 Emitter and Receiver Hookup</td>
<td>27</td>
</tr>
<tr>
<td>3.5.3 System Power (temporary connection)</td>
<td>27</td>
</tr>
<tr>
<td>3.5.4 MINI-SCREEN System Initial Checkout</td>
<td>28</td>
</tr>
<tr>
<td>3.5.5 Output Relay Connections</td>
<td>31</td>
</tr>
<tr>
<td>3.5.6 System Power (permanent connection)</td>
<td>33</td>
</tr>
<tr>
<td>3.5.7 Auxiliary Monitor Relay or Alarm Relay</td>
<td>34</td>
</tr>
<tr>
<td>3.5.8 Remote Test Input or Latch Reset Input</td>
<td>34</td>
</tr>
<tr>
<td>3.6 Controller Module Configuration</td>
<td>25</td>
</tr>
<tr>
<td>4. Operating Instructions</td>
<td>35</td>
</tr>
<tr>
<td>4.1 Security Protocol</td>
<td>35</td>
</tr>
<tr>
<td>4.2 Periodic Checkout Requirements</td>
<td>35</td>
</tr>
<tr>
<td>4.3 Normal Operation</td>
<td>35</td>
</tr>
<tr>
<td>5. Troubleshooting and Maintenance</td>
<td>37</td>
</tr>
<tr>
<td>5.1 Troubleshooting Lockout Conditions</td>
<td>37</td>
</tr>
<tr>
<td>5.2 Effects of Electrical and Optical Noise</td>
<td>39</td>
</tr>
<tr>
<td>5.3 Servicing and Maintenance</td>
<td>39</td>
</tr>
<tr>
<td>5.3.1 Fuse Testing and Replacement</td>
<td>39</td>
</tr>
<tr>
<td>5.3.2 Control Module and Relay Power/Supply Replacement</td>
<td>39</td>
</tr>
<tr>
<td>5.3.3 Cleaning</td>
<td>40</td>
</tr>
<tr>
<td>5.3.4 Warranty Service</td>
<td>40</td>
</tr>
<tr>
<td>6. Alignment and Checkout</td>
<td>41</td>
</tr>
<tr>
<td>6.1 MINI-SCREEN System Alignment</td>
<td>41</td>
</tr>
<tr>
<td>6.2 Commissioning Checkout</td>
<td>45</td>
</tr>
<tr>
<td>6.3 Shift Change, Power-up and Machine Setup Change Checkout</td>
<td>48</td>
</tr>
<tr>
<td>6.4 Semi-annual Checkout</td>
<td>49</td>
</tr>
<tr>
<td>Initial Checkout: MINI-SCREEN System only</td>
<td>28</td>
</tr>
<tr>
<td>Glossary of Terms</td>
<td>50</td>
</tr>
<tr>
<td>Specifications</td>
<td>56</td>
</tr>
<tr>
<td>Models and Ordering Information</td>
<td>58</td>
</tr>
<tr>
<td>Replacement Parts & Accessories</td>
<td>59</td>
</tr>
<tr>
<td>Applicable Safety Standards</td>
<td>64</td>
</tr>
</tbody>
</table>
1. MINI-SCREEN System Introduction

The Banner MINI-SCREEN System is a microprocessor-controlled opposed mode light screen system. It is designed for use as a point-of-operation guarding device, and is especially suited to smaller production machinery.

This three-piece system consists of an emitter, a receiver, and one of two available control modules (MSDINT-1 with trip output and MSDINT-1L2 with latching output). The sensor pair may be of any length. The sensors connect to the control module using two 5-wire shielded cables (purchased separately), which have quick-disconnect fittings on their sensor end. The controller automatically recognizes the size and type of the sensors wired to it – no programming is necessary. The control module is powered by 24V dc.

Banner’s microprocessor-based circuit establishes a high level of control reliability in machine guard design. The MINI-SCREEN System is designed to be “diverse redundant,” in which two microprocessors of different design, running from two different instruction sets, constantly check all system components, including each other. Banner MINI-SCREEN Systems are extensively FMEA (Failure Mode and Effects Analysis) tested to establish an extremely high degree of confidence that no system component will ever, even if it does fail, cause a failure to danger.

In typical operation, if any part of an operator’s body (or any opaque object) of more than a certain cross section interrupts the light screen (called the defined area), the output relays of the MINI-SCREEN System will open. The contacts of the output relays are connected to the guarded machine’s primary control elements (MPCEs) which immediately stop the motion of the guarded machine. The output relays have forced-guided contacts for enhanced control reliability.

The MINI-SCREEN System features selectable floating blanking which allows for the movement of multiple work-pieces through one or both light screens. The controller is easily configured for either one- or two-beam floating blanking. Use of floating blanking affects the minimum object sensitivity. See Section 2.1 for complete information.

Figure 1. Banner MINI-SCREEN System: emitter, receiver, control module, and two interconnecting cables.
Emitters have a row of synchronized modulated infrared (invisible) light emitting diodes (LEDs). Receivers have a corresponding row of synchronized phototransistors.

Emitters and receivers are available in lengths ranging from 4” to 4’ (see next page). This length determines the height of the defined area. The sensor design includes a swivel bracket at each end for quick mounting and ease of alignment.

Control modules and receivers have LED indicators for system operating status and alignment. Each receiver has three sets of status LEDs (front and both sides) for high visibility. Emitters have POWER ON indicators.

MINI-SCREEN emitters and receivers are available with one of two sensing ranges (maximum emitter-to-receiver separation): 9 m (30’) or 18 m (60’). Certain range restrictions apply when using corner mirrors (see Section 6). The patented modulated receiver design produces exceptionally high immunity to ambient light interference.

The minimum object sensitivity of 30’ range sensor pairs is 19 mm (0.75”) when no blanking is in use. The minimum object sensitivity of 60’ range sensor pairs is 25 mm (1.0”) when no blanking is in use.

The minimum object sensitivity is the minimum-diameter object that the light screen can reliably detect anywhere within the defined area. Minimum object sensitivity directly affects the minimum allowable distance between the defined area of the light screen and the nearest hazard point (the separation distance). See Section 3.2.

Emitter and receiver circuits are designed to meet high standards for vibration resistance. Every emitter, receiver, and controller module is serialized and undergoes extensive burn-in testing at the factory.

Two models of control module are available. Model MSDINT-1 has a “trip” output which automatically resets the output relays as soon as the defined area is clear. Model MSDINT-1L2 has a “latch” output which requires a manual reset after the defined area is cleared after an interruption. The latch output is used in perimeter guarding applications, where it is physically possible for personnel to enter into the area of hazardous machine motion by passing through the defined area. The latch output model is also useful in general machine guarding applications where additional machine control (via the latch reset) is desired or required. Both models are powered by 24V dc. The control module automatically recognizes the length of the sensor pair wired to it – no programming is necessary.

The control module contains a power supply (to power the controller itself and the sensor pair), a microprocessor controller module to control sensing logic, and a replaceable relay board with forced-guided output relays. A single-digit Diagnostic Display, visible through a clear window in the control module cover, identifies trouble causes.

The selectable auto power-up feature makes a key reset at system power-up unnecessary for those applications where a key reset is difficult to perform.

A functional schematic diagram of the MINI-SCREEN System appears on page 12. For MINI-SCREEN System dimension drawings, see pages 23 and 24. For specifications, see pages 56-57.

MINI-SCREEN system components may be purchased separately or bundled together in kit form. The components are listed on the next page.
1.1 MINI-SCREEN Components and Kits

MINI-SCREEN Systems consist of one control module, an emitter, a receiver and two cables. All components may be ordered separately; the only requirement is that each emitter and its corresponding receiver must be of equal length and sensing range. Components also may be ordered bundled together in kits (see the current Banner Safety Products catalog for a list of available kits). Cables are interchangeable between emitters and receivers. See pages 59-63 for system accessories.

MINI-SCREEN Emitters (E) and Receivers (R)

<table>
<thead>
<tr>
<th>Defined Area</th>
<th>Models</th>
<th>Black Anodized</th>
<th>Yellow Painted</th>
<th>Number of Beams</th>
</tr>
</thead>
<tbody>
<tr>
<td>114 mm (4.5")</td>
<td>MSE424</td>
<td>MSXE424</td>
<td>MSXE424Y</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>MSR424</td>
<td>MSXR424</td>
<td>MSXR424Y</td>
<td></td>
</tr>
<tr>
<td>215 mm (8.5")</td>
<td>MSE824</td>
<td>MSXE824</td>
<td>MSXE824Y</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>MSR824</td>
<td>MSXR824</td>
<td>MSXR824Y</td>
<td></td>
</tr>
<tr>
<td>305 mm (12")</td>
<td>MSE1224</td>
<td>MSXE1224</td>
<td>MSXE1224Y</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>MSR1224</td>
<td>MSXR1224</td>
<td>MSXR1224Y</td>
<td></td>
</tr>
<tr>
<td>406 mm (16")</td>
<td>MSE1624</td>
<td>MSXE1624</td>
<td>MSXE1624Y</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>MSR1624</td>
<td>MSXR1624</td>
<td>MSXR1624Y</td>
<td></td>
</tr>
<tr>
<td>508 mm (20")</td>
<td>MSE2024</td>
<td>MSXE2024</td>
<td>MSXE2024Y</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>MSR2024</td>
<td>MSXR2024</td>
<td>MSXR2024Y</td>
<td></td>
</tr>
<tr>
<td>610 mm (24")</td>
<td>MSE2424</td>
<td>MSXE2424</td>
<td>MSXE2424Y</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>MSR2424</td>
<td>MSXR2424</td>
<td>MSXR2424Y</td>
<td></td>
</tr>
<tr>
<td>711 mm (28")</td>
<td>MSE2824</td>
<td>MSXE2824</td>
<td>MSXE2824Y</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>MSR2824</td>
<td>MSXR2824</td>
<td>MSXR2824Y</td>
<td></td>
</tr>
<tr>
<td>813 mm (32")</td>
<td>MSE3224</td>
<td>MSXE3224</td>
<td>MSXE3224Y</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>MSR3224</td>
<td>MSXR3224</td>
<td>MSXR3224Y</td>
<td></td>
</tr>
<tr>
<td>914 mm (36")</td>
<td>MSE3624</td>
<td>MSXE3624</td>
<td>MSXE3624Y</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>MSR3624</td>
<td>MSXR3624</td>
<td>MSXR3624Y</td>
<td></td>
</tr>
<tr>
<td>1016 mm (40")</td>
<td>MSE4024</td>
<td>MSXE4024</td>
<td>MSXE4024Y</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>MSR4024</td>
<td>MSXR4024</td>
<td>MSXR4024Y</td>
<td></td>
</tr>
<tr>
<td>1118 mm (44")</td>
<td>MSE4424</td>
<td>MSXE4424</td>
<td>MSXE4424Y</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>MSR4424</td>
<td>MSXR4424</td>
<td>MSXR4424Y</td>
<td></td>
</tr>
<tr>
<td>1219 mm (48")</td>
<td>MSE4824</td>
<td>MSXE4824</td>
<td>MSXE4824Y</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>MSR4824</td>
<td>MSXR4824</td>
<td>MSXR4824Y</td>
<td></td>
</tr>
</tbody>
</table>

Pigtail Quick-Disconnect Option

Any emitter or receiver may be ordered with a 305 mm (12") cable pigtail terminated in the 5-pin male Mini-style quick-disconnect connector. This option accommodates requirements for right-angle exit of the cable from the base of the emitter and receiver and connects to the same mating quick-disconnect cables listed above (ordered separately). To specify a pigtail quick-disconnect cable, add suffix “P” to the model number of the emitter or receiver, for example: MSE1624YP.

Controllers (One per system)

- MSDINT-1: 24V dc control module, Trip Output
- MSDINT-1L2: 24V dc control module, Latch Output

Cables (Two required per system)

- QDC-515C: 4.5 m (15") cable, straight QD connector. One cable per sensor.
- QDC-525C: 7.6 m (25") cable, straight QD connector. One cable per sensor.
- QDC-550C: 15 m (50") cable, straight QD connector. One cable per sensor.
- QDC-5100: 30 m (100") cable, straight QD connector. One cable per sensor.
- QDC-5150: 45 m (150") cable, straight QD connector. One cable per sensor.

*NOTE: Total cable length per emitter and receiver pair must be less than 53 m (175").

Panel-Mount Cables

Panel-mount cables are also available to provide quick-disconnect connection between emitter/receiver and the control module, without opening the electrical panel. See Accessories, pages 59-63.
2. Overview of MINI-SCREEN System Operation

In operation, an emitter and a receiver are separately mounted and aligned. This establishes a screen of invisible infrared light beams called the **defined area** (Figure 1). Center-to-center spacing between adjacent light beams is 12.7 mm (0.50").

The following features of the MINI-SCREEN System are discussed in the listed subsections:

- Blanking (Section 2.1)
- Auto power-up (Section 2.2)
- Lockout Conditions and Key Resets (Section 2.3)
- Operating Status Indicator Lights (Section 2.4)
- Diagnostic Indicator LEDs (Section 2.5)
- Output Relay Operation (Section 2.6)
- Control Reliability: Redundancy & Self-checking (Section 2.7)
- Remote Test Input (Section 2.8)

2.1 Blanking

MINI-SCREEN Systems may be configured to be "blind" to the passage of multiple objects of limited size through the defined area. This is useful in press brake and other applications where multiple blanked zones (moveable or stationary) are needed.

Floating blanking is the "blinding" of groups of two adjacent sensing beams, which will appear to change position ("float") in order to allow multiple objects (usually workpiece material) to move through the defined area, at any point, without tripping the final switching device relays of the MINI-SCREEN System. With floating blanking ON, any and every one- or two-beam blockage(s) will be ignored. See Figure 2.

The ignored object size and resultant minimum object sensitivity are listed in the table below.

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Floating Blanking</th>
<th>Maximum Size of Undetected Objects</th>
<th>Minimum Object Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 m (30') range</td>
<td>Off</td>
<td>(Not applicable)</td>
<td>19.1 mm (0.75")</td>
</tr>
<tr>
<td></td>
<td>2-beam</td>
<td>20.3 mm (0.80")*</td>
<td>44.5 mm (1.75")</td>
</tr>
<tr>
<td>18 m (60') range</td>
<td>Off</td>
<td>(Not applicable)</td>
<td>25.4 mm (1.00")</td>
</tr>
<tr>
<td></td>
<td>2-beam</td>
<td>16.5 mm (0.65")*</td>
<td>50.8 mm (2.00")</td>
</tr>
</tbody>
</table>

* Assumes objects moving exactly perpendicular to the plane of the light beams.

The minimum object sensitivity is the minimum-diameter object that the light screen can reliably detect anywhere within the defined area. Minimum object sensitivity directly affects the minimum allowable distance between the defined area of a light screen and the nearest hazard point (the separation distance). See Section 3.2.

Floating blanking preference is set via a pair of DIP switches on the controller board inside the control module (see Figure 18 and Section 3.4, both on page 25, for details). NOTE: Blanking ON is indicated by a flashing green Status Indicator LED.
2.2 Auto Power-up

Normal operation of the MINI-SCREEN System requires a key reset each time power is applied to the system. This is usually a desired response to a power failure or interrupt, and is required by some design standards. In applications where a key reset is difficult to perform, the auto power-up feature puts the MINI-SCREEN System directly into RUN mode when power is applied.

Auto power-up is enabled or disabled via a pair of DIP switches located on the controller board inside the control module. See Figure 18 and Section 3.4 on page 25 for details.

2.3 Lockout Conditions and Key Resets

A lockout condition of the MINI-SCREEN System causes all of its output relays to open, sending a “stop” signal to the guarded machine.

A Power-up/Power Interrupt Lockout condition will occur:
• Upon power-up of the MINI-SCREEN System (unless Auto Power-up is ON; see Figure 5, page 11), or
• If power to the MINI-SCREEN System is interrupted (unless Auto Power-up is ON; see Figure 5).

An Internal Lockout condition will occur:
• If the control box key switch is in the RESET position at power-up (with Auto Power-up ON); or if the key switch is switched to RESET while the system is in RUN mode,
• If a Final Switching Device (FSD - see Glossary) relay does not “drop out” within its specified time,
• If the Secondary Switching Device (SSD - see Glossary) relay has de-energized,
• If the controller module switch settings are inconsistent with each other or if they were changed while the system was in RUN mode, or
• If the self-checking circuits of the microprocessor detect a component failure within the MINI-SCREEN System itself.

A lockout condition resulting from an internal system fault is indicated by a flashing red status indicator LED on the control box and the receiver unit. The green and yellow LEDs will be OFF. See Figure 5, page 11.

Power-up/power interrupt lockouts (yellow LED only double-flashing) are normal and require a key reset for operation to continue.

Internal lockout conditions result from component failures or incorrect controller settings, which must be corrected before the system will allow operation to continue (Section 2.7). Diagnostic indicators, visible through a window in the control box cover, indicate the cause of the lockout (Section 2.5). Internal lockout conditions also require a key reset to return the system to RUN mode. A valid key reset consists of turning the key switch to the RESET position, holding it there for at least 1/2 second, and then returning the key switch to the RUN position. Latching output models also require a latch reset, following the key reset.
2.4 Operating Status Indicators

Three LED indicators on the control module and receiver provide ongoing information on system operating status: green (clear) red (blocked or latched) and yellow (reset).

The status indicator functions are as follows:

Red ON steadily and Yellow single-flashing* (blocked or latched condition): the MINI-SCREEN System has been reset and is in RUN mode, but either there is an obstruction in the defined area, or the emitter and receiver are misaligned. FSD1 and FSD2 contacts are open (de-energized). SSD relay is closed (energized).

*If the TEST INPUT terminals are shorted and the defined area is clear, the Yellow LED will be ON steadily (see Section 3.5.8).

A flashing yellow LED indicates sensor alignment. The faster the flash rate, the more beams are “made,” and the fewer beams are blocked or “not made.” This feature is very helpful for emitter/receiver alignment (Section 6.1). When light screen alignment is correct, the green light will come ON (to join yellow) when the obstruction is removed. If alignment is not correct, the green light will remain OFF when the obstruction is removed.

Red, Green, and Yellow ON steadily (latching output models only): (A flashing Green LED indicates that blanking is ON.) The light screen is reset and in RUN mode, but waiting for a Latch Reset. (All blockages in the light screen have been removed.) The defined area is clear of obstructions, and the emitter and receiver are properly aligned. FSD1 and FSD2 contacts are open (de-energized). The SSD contact is closed (energized).

Figure 3. Control Module Indicator LEDs
Green and Yellow ON steadily: the MINI-SCREEN System has been reset and is in RUN mode, the defined area is clear of obstructions, and the emitter and receiver are properly aligned. (A flashing Green LED indicates that blanking is ON). SSD, FSD1, and FSD2 contacts are closed (energized).

Red (only) ON and flashing: a lockout condition due to an internal MINI-SCREEN System problem exists. SSD, FSD1, and FSD2 are all open (de-energized). See Section 5 – Troubleshooting.

Yellow (only) ON and double-flashing: a double-flashing Yellow LED indicates a power-up or power interrupt lockout condition. These lockouts occur in the normal course of powering up the MINI-SCREEN System or upon an interruption of power to the System (unless Auto Power-up is ON; see page 25). SSD, FSD1 and FSD2 contacts are open (de-energized).

Yellow (only) ON steadily: the key switch has been switched to the RESET position at power-up. FSD1 and FSD2 contacts are open (de-energized). SSD contact is closed (energized).

![Figure 4. Status indicator LEDs (MINI-SCREEN receiver)](image-url)
System Overview

MINI-SCREEN

MSDINT-1 (Trip)/MSDINT-1L2 (Latch)

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Normal Operation</th>
<th>Indicator Status</th>
<th>Relay Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Up</td>
<td>Apply power to Control Box LOCKOUT STATE</td>
<td>BLOCKED Red, CLEAR Green, RESET Yellow</td>
<td>FSD1, FSD2, SSD, Aux. Monitor, Alarm</td>
</tr>
<tr>
<td></td>
<td>Turn key to RESET position</td>
<td>Red, Green, Yellow</td>
<td>FSD1, FSD2, SSD, Aux. Monitor, Alarm</td>
</tr>
<tr>
<td>Key Reset</td>
<td>Turn key to RUN position</td>
<td>Defined area is clear</td>
<td>Red, Green, Yellow*</td>
</tr>
<tr>
<td>Run</td>
<td>Defined area is blocked (TRIP or LATCHED)</td>
<td>Defined area is clear, but LATCHED†</td>
<td>Red, Green, Yellow†</td>
</tr>
<tr>
<td></td>
<td>Internal System fault (LOCKOUT)</td>
<td>Internal System fault (LOCKOUT)</td>
<td>Red, Green, Yellow†</td>
</tr>
</tbody>
</table>

Note:
Latched output models require a latch reset following the key reset (see Section 3.5.1.1 and 3.5.4). The red LED indicator will be ON following the key reset but will go OFF after the latch output is reset. The alarm contact for latch output models will close when the defined area is blocked (system becomes latched) and will open when the latch output is reset. See page 34.

2.5 Diagnostic Indicator

There are four Diagnostic Indicator LEDs located on the edge of the controller board, visible through a transparent window in the control module cover. Refer to Figure 4 (page 9).

The purpose of the Diagnostic Indicator LEDs is to assist in troubleshooting by indicating the possible causes of internal MINI-SCREEN System problems (lockouts) that are discovered as a result of the controller’s self-checking function.

The green Diagnostic Indicator LED is always ON when power is applied to the controller, except when a controller microprocessor has failed. Use the table in Figure 24 to interpret the message of the four Diagnostic Indicator LEDs.

Figure 5. MINI-SCREEN System status indicators and associated output conditions
2.6 Output Relay Operation

The MINI-SCREEN System control module has three output relays plus an Auxiliary Monitor or Alarm relay. Refer to Figure 6, below. The three output relays are labeled “FSD1”, “FSD2”, and “SSD”. The contacts of the Final Switching Device (FSD) relays (FSD1 and FSD2) are connected to the Machine Primary Control Elements (MPCEs) of the guarded machine. An MPCE is an electrically powered element of the guarded machine that directly controls the machine's normal operating motion in such a way that it is last (in time) to operate when motion is either initiated or arrested. The Secondary Switching Device (SSD) relay contacts are connected to the guarded machine's Machine Secondary Control Element (MSCE), an electrically powered element of the guarded machine (independent of both MPCEs) that is capable of removing power from the prime mover of the dangerous part of the machine in the event of a system fault. The two MPCEs must each (alone) be capable of stopping the motion of the guarded machine in an emergency. The opening of any FSD1, FSD2, or SSD relay contact results in the removal of power to either an MPCE or MSCE (or both), which will stop the motion in the guarded machine.

Any object that blocks one or more unblanked beams will be detected and will cause a trip condition (control module MSDINT-1) or a Latch condition (control module MSDINT-1L2). Output relays FSD1 and FSD2 (but not SSD) in the control module open their contacts in response.

All three output relays (FSD1, FSD2, and SSD) will open their contacts in response to any one of several lockout conditions, including component failure within the MINI-SCREEN System itself (see Control Reliability, Section 2.7). The MINI-SCREEN System automatically resets itself from a trip condition when the object that caused the trip is removed, but recovery from a latch condition requires a latch reset and recovery from a lockout condition requires a key reset. (Section 3.5.4).

The Auxiliary/Alarm Monitor relay is a separate relay intended for non-safety-related purposes. It typically is used to signal a programmable logic controller (PLC) when output relay contacts FSD1 and FSD2 open or close. This monitor contact is rated only for 10VA, maximum. See Section 3.5.7 for more information.

Figure 6. Banner MINI-SCREEN System functional schematic
2.7 Control Reliability: Redundancy and Self-checking

MINI-SCREEN Systems meet certain U.S. and international control reliability standards for safety. Banner MINI-SCREEN Systems must reliably send a “stop” signal to a guarded machine as follows:

1) The MINI-SCREEN System must provide a “stop” signal to the guarded machine whenever the defined area is interrupted, within 48, 60, or 72 milliseconds (depending upon sensor length; see Specifications, pages 56-57).

In order for the machinery guarded by the MINI-SCREEN System to be stopped as described, the guarded machine must be capable of stopping at any point in its machine cycle. This means that the MINI-SCREEN System cannot be used with certain types of machinery, such as single stroke (also known as “full-revolution” clutched) machinery, or any machine with inconsistent machine response time and stopping performance. If there is any doubt about whether or not your machinery is compatible, contact the Banner Factory Application Engineers.

2) The MINI-SCREEN System must provide a “stop” signal to the guarded machine when internal component failures have occurred which compromise the integrity of the MINI-SCREEN System itself.

This type of component failure includes any internal MINI-SCREEN System failure which could prevent or delay the output relays of the MINI-SCREEN System from going to a trip, a latch or a lockout condition in response to a situation which, in normal operation, would cause them to do so. The ability of the MINI-SCREEN System to send a “stop” signal even when such a component failure has occurred depends upon its redundant design.

Redundancy requires that MINI-SCREEN System circuit components be “backed up” to the extent that, if the failure of any single component will prevent effective stopping action when needed, that component must have a redundant counterpart which will perform the same function.

The microprocessor-controlled MINI-SCREEN System is designed with diverse redundancy. Diverse redundant components are of different designs, and microprocessor programs used by them run from different instruction sets.

Redundancy must be maintained for as long as the MINI-SCREEN System is in operation. Since a redundant system is no longer redundant once a component has failed, MINI-SCREEN Systems are designed to be continuously self-checking. A component failure detected by or within the self-checking system causes a “stop” signal to be sent to the guarded machine and puts the MINI-SCREEN System into a lockout condition.

Recovery from this type of lockout condition requires replacement of the failed component (to restore redundancy) and a key reset (plus a latch reset for latch output models). Possible causes of lockout conditions are listed in Section 2.3. The Diagnostic Indicator LEDs are used to diagnose internal causes of a lockout condition (Section 5.1).

2.8 Remote Test Input (MSDINT-1 only)

A pair of terminals is provided (see Figure 20, page 27) for an external normally-open switch. These terminals are labeled “TEST 1” and “TEST 2”. Closing a switch connected between these two terminals simulates an interruption of the light screen. The device used must be capable of switching 15 to 50V dc at 20 to 100 mA. The switch must be held closed for a minimum of 0.05 seconds to guarantee system response. This remote test input is sometimes useful for system setup and checkout procedures.
Installation and Alignment

3. Installation and Alignment

3.1 Appropriate Application

The MINI-SCREEN System may only be used to guard machinery that is capable of stopping motion immediately upon receiving a stop signal and at any point in its machine cycle.

The MINI-SCREEN System may not be used for the following:

- With single stroke (also called “full revolution”) clutched machinery, as this type of machinery is incapable of stopping immediately.
- On certain other types of machinery, including any machine with inadequate or inconsistent stopping response time, and any machine that ejects materials or component parts through either defined area.
- In any environment likely to adversely affect the efficiency of a photoelectric sensing system. For example, corrosive chemicals or fluids or unusually severe levels of smoke or dust, if not controlled, may degrade the efficiency of the MINI-SCREEN System.
- As a tripping device to initiate machine motion (PSDI applications) on mechanical power presses, per OSHA regulation 29 CFR 1910.217.

CAUTION . . .
Install System Only on Appropriate Applications

In order for the machinery guarded by the MINI-SCREEN System to be stopped as described, that machinery must be capable of stopping at any point in its machine cycle. This means that the MINI-SCREEN System cannot be used with certain types of machinery (see listing at left). If there is any doubt about whether or not your machinery is compatible with the MINI-SCREEN System, contact Banner's Application Engineers at the factory.

WARNING . . . Read this Section Carefully Before Installing the System

The Banner MINI-SCREEN System is a point-of-operation machine guarding device. Its ability to perform this function depends upon the appropriateness of the application and upon the MINI-SCREEN System’s proper mechanical and electrical installation and interfacing to the machine to be guarded. If all mounting, installation, interfacing, and checkout procedures are not followed properly, the MINI-SCREEN System cannot provide the protection for which it was designed. The user has the responsibility to ensure that all local, state, and national laws, rules, codes, or regulations relating to the installation and use of this control system in any particular application are satisfied. Extreme care should be taken to ensure that all legal requirements have been met and that all technical installation and maintenance instructions contained in this manual are followed. Read Section 3 of this manual (and its subsections) carefully before installing the system. Failure to follow these instructions could result in serious injury or death.

The user has the sole responsibility to ensure that the Banner MINI-SCREEN System is installed and interfaced to the guarded machine by Qualified Persons in accordance with this manual and applicable safety regulations. A “qualified person” is defined as “a person or persons who, by possession of a recognized degree or certificate of professional training, or who, by extensive knowledge, training, and experience, has successfully demonstrated the ability to solve problems relating to the subject matter and work” (ANSI/ASME B30.2-1983).

WARNING . . . Use of MINI-SCREEN Systems for Perimeter Guarding

If a MINI-SCREEN System is installed for use as a perimeter guarding system, the dangerous machine motion must be able to be initiated following an interruption of the defined area only after actuation of a reset switch. (This describes the normal operation of control module model MSDINT-1L2, which has a Latch output.)

If control module model MSDINT-1 is used for perimeter guarding, the Machine Primary Control Elements (MPCEs) of the guarded machine must be wired so that the trip output of the control module causes a latched response of the MPCEs. The MPCEs must be reset only by actuation of a reset switch.

The reset switch must be located outside of, and not accessible from within, the area of dangerous motion, and must be positioned so that the area of dangerous motion may be observed by the switch operator during the reset operation. Additional safeguarding, as described by the ANSI B11 series of safety requirements or other appropriate standards, must be used if any space between either defined area and any danger point is large enough to allow a person to stand undetected by the MINI-SCREEN System. Failure to observe this warning could result in serious injury or death.
3.2 Mechanical Installation Considerations

The two factors that influence the layout of the MINI-SCREEN System's mechanical installation the most are:

- separation distance,
- hard guarding.

3.2.1 Separation Distance

The MINI-SCREEN System must be able to react fast enough, when a hand or other object is inserted into the defined area, to send a stop signal to the guarded machine to stop the dangerous motion before the object or hand reaches the closest reachable hazard point on the machine. The separation distance is the minimum distance that is required between the midpoint of the defined area and the closest reachable hazard point. The actual separation distance required depends upon several factors, including the speed of the hand (or object), the total system stopping time (of which there are several response time components), and the depth penetration factor. The formula used to calculate the separation distance is:

\[D_S = K \times (T_S + T_r) + D_{pf} \]

where:

- \(D_S \) = the separation distance;
- \(K \) = the OSHA-recommended hand speed constant of 63" per second (NOTE 1, below);
- \(T_S \) = the overall stop time of the machine measured from the application of the "stop" signal to the final ceasing of all motion (including stop times of all relevant control elements, and measured at maximum machine velocity). See the WARNINGs (page 16), NOTE 2 (below), and the NOTICE regarding MPCEs (page 32);
- \(T_r \) = the response time of the MINI-SCREEN System. Response time varies with sensor length. See table at left.
- \(D_{pf} \) = the added distance due to depth penetration factor, as prescribed in OSHA 1910.217 and ANSI B11 standards; see table below.

Response Time

<table>
<thead>
<tr>
<th>Sensor Length</th>
<th>(T_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5" to 16"</td>
<td>0.048 seconds</td>
</tr>
<tr>
<td>20" to 32"</td>
<td>0.060 seconds</td>
</tr>
<tr>
<td>36" to 48"</td>
<td>0.072 seconds</td>
</tr>
</tbody>
</table>

Floating Blanking

<table>
<thead>
<tr>
<th>Floating Blanking</th>
<th>30' Range Sensors</th>
<th>60' Range Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>(D_{pf} = 1.6")</td>
<td>(D_{pf} = 2.5")</td>
</tr>
<tr>
<td>On</td>
<td>(D_{pf} = 5.0")</td>
<td>(D_{pf} = 5.9")</td>
</tr>
</tbody>
</table>

NOTES:

1) The OSHA-recommended hand-speed constant \(K \) has been determined by various studies, and although these studies indicate speeds of 63"/sec to over 100"/sec, they are not conclusive determinations. The user should consider all factors, including the physical ability of the operator, when determining the value of \(K \).
2) \(T_S \) is usually measured by a stop-time measuring device. If the specified machine stop time is used, we recommend that at least 20% be added as a safety factor to account for clutch/brake system deterioration.
3) Use of floating blanking will always cause the required \(D_{pf} \) to increase.
4) \(D_{pf} = 3.4" (S - .276) \) where \(S \) = Minimum Object Sensitivity (per ANSI B11.1 and OSHA 1910.217).
WARNING . . .
Banner MINI-SCREEN System emitters and receivers must be mounted at a distance from moving machine parts that is determined by OSHA standards found in Section 1910.217 (c)(3)(ii)(e). Failure to establish and maintain the required separation distance exactly as described in Section 3.2 of the MINI-SCREEN manual could result in serious injury or death.

CAUTION . . .
Floating blanking increases Dpf. Increase the penetration factor to calculate the separation distance whenever floating blanking is used.

Always turn floating blanking OFF when the larger minimum object detection size is not required.

Example: Separation Distance (D_s) Calculation

The following example shows how to use the formula from page 15 to calculate the safety distance (D_s). These numbers will be used for the variables in the formula:

- \(K = 63" \) per second (the hand speed constant set by OSHA)
- \(T_s = 0.250 \) second (the total stop time of the example machine, specified by machine manufacturer)
- \(T_r = 0.048, 0.060, \text{ or } 0.072 \) second (the specified response time of the MINI-SCREEN System; see page 15 or Specifications, pages 56-57.)

This example will assume use of a 24" MINI-SCREEN emitter and receiver pair, with 30' range. From the table on page 15, the value for MINI-SCREEN System response is \(T_r = 0.060 \) seconds.

This example will also assume the use of 2-beam floating blanking, which requires the depth penetration factor \(D_{pf} = 5 \), as indicated in the table on page 15. Substitute these numbers into the safety distance formula, as follows:

\[
D_s = K \times (T_s + T_r) + D_{pf}
\]

\[
D_s = 63 \times (.250 \times 1.2 + .060) + 5 = 28"
\]

Therefore, in this example, the MINI-SCREEN emitter and receiver must be mounted so that no part of the defined area will be closer than 28" to the closest reachable hazard point on the guarded machine.

* 20% safety factor (see NOTE 2 on page 15)
MINI-SCREEN

Installation and Alignment

3.2.2 Hard Guarding

ANSI B11.1-1988, E6.3.2 (14) requires that “all areas of entry to the point of operation not protected by the presence-sensing device shall be otherwise safeguarded.” The hazard point must be accessible only through the defined area. This means that mechanical barriers (screens, bars, etc.), or supplemental presence-sensing devices (supplemental guarding) must be installed, wherever needed, to prevent any person from reaching around, under, or over the defined area and into the point of operation, and to prevent any person from standing between the defined area and the hazard point (see OSHA 1910.212). The use of mechanical barriers for this purpose is called “hard guarding” (see the WARNING on the left and the hard guarding example, below).

There must be no gaps between the hard guarding and the edges of the defined area. Also, OSHA specifies a relationship between the distance of the hard guard barrier from the point of operation and the maximum allowable size of openings in that barrier (see OSHA 1910.217, Table O-10). Openings in the hard guard material must meet OSHA criteria.

Additional safeguarding, as described by the ANSI B11 series of safety requirements or other appropriate standards, must be used if the space between either defined area and the nearest danger point is large enough to allow a person to stand undetected by the MINI-SCREEN System.
3.2.2.1 Pass-Through Hazards

A “pass-through hazard” is associated with applications where personnel may pass through a safeguard (at which point the hazard stops or is removed), and then may continue into the hazardous area. Subsequently, their presence is no longer detected, and the safeguard can not prevent the start or restart of the machine. The related danger is the unexpected start or restart of the machine while personnel are within the hazardous area.

In the use of safety light screens, a pass-through hazard typically results from large separation/safety distances calculated from long stopping times, large minimum object sensitivities, reach over, reach through, or other installation considerations. A pass-through hazard can be generated with as little as 75mm (3") between the defined area and the machine frame or hard guarding.

Reducing or Eliminating Pass-Through Hazards

Measures must be taken to eliminate or reduce pass-through hazards. One solution is to ensure that personnel are continually sensed while within the hazardous area. This can be accomplished by using supplemental safeguarding, including: safety mats, area scanners, and horizontally mounted safety light screens. While it is recommended to eliminate the pass-through hazard altogether, this may not be possible due to cell or machine layout, machine capabilities, or other application considerations.

An alternate method is to ensure that once the safeguarding device is tripped it will latch, and require a deliberate manual action to reset. This type of supplemental safeguarding relies upon the location of the Reset switch as well as safe work practices and procedures to prevent an unexpected start or restart of the guarded machine.

The Reset switch or actuating control must be positioned outside the guarded area, and provide the switch operator with a full unobstructed view of the entire guarded area and any associated hazards as the Reset is performed. The Reset switch or actuating control must not be reachable from within the guarded area and must be protected (through the use of rings or guards) against unauthorized or inadvertent operation. A key-actuated Reset switch provides some operator control, as it can be removed by the operator and taken into the guarded area. However, this does not prevent unauthorized or inadvertent Resets due to spare keys in the possession of others, or additional personnel entering the safeguarded area unnoticed.

The Reset of a safeguard must not initiate hazardous motion. Also, before each Reset of the safeguard is performed, safe work procedures require that a start-up procedure be followed and that the individual verifies that the entire hazardous area is clear of all personnel. If any areas can not be observed from the Reset switch location, additional supplemental safeguarding must be used: at minimum, visual and audible warnings of machine start-up.

WARNING . . .

Use of MINI-SCREEN Systems for Perimeter Guarding

If a MINI-SCREEN System is installed for perimeter guarding, the system MUST require actuation of a Reset switch before initiating the dangerous machine motion following an interruption of the defined area.

If a MINI-SCREEN System is used for perimeter guarding, the Machine Primary Control Elements (MPCEs) of the guarded machine must be wired so that the FSD outputs of the control box cause a latched response of the MPCEs. The MPCEs must be reset only by actuation of a Reset switch.

The Reset switch must be located outside of, and not be accessible from within, the area of dangerous motion, and it must be positioned so that the area of dangerous motion may be observed by the switch operator during the reset operation.

Additional safeguarding, as described by the ANSI B11 series of safety requirements or other appropriate standards, must be used if any space between either defined area and any danger point is large enough to allow a person to stand undetected by the MINI-SCREEN System. Failure to observe this warning could result in serious bodily injury or death.
3.2.3 Emitter and Receiver Orientation

It is absolutely necessary that each emitter and receiver pair are mounted perfectly parallel to each other and aligned in a common plane with both cable ends pointing in the same direction. Never mount an emitter with its cable end oriented opposite to the cable end of its receiver. If the emitter and receiver cable ends are oriented opposite to each other, there will be voids in the light screen through which objects can pass undetected (see Figure 10a).

An emitter and receiver pair may be oriented in a vertical plane, in a horizontal plane, or at any angle between horizontal and vertical. However, the cable ends must always point in the same direction. Always be certain that each light screen completely covers all access to the hazard point which is not already protected by hard guarding or other supplemental guarding.

![Figure 9. Examples of correct emitter and receiver orientation](image)

- a) Both cable ends down
- b) Both cable ends up
- c) Oriented parallel to floor with both cable ends pointing in the same direction

![Figure 10. Examples of incorrect emitter and receiver orientation](image)

- a) Cable ends pointing in opposite directions.
 Problem: Voids in defined area.
- b) Emitter and receiver not parallel to each other.
 Problem: Reduced excess gain

WARNING . . .

Proper Orientation of System Emitters and Receivers

Each emitter and receiver pair of the MINI-SCREEN System must be installed with their corresponding ends (either cabled ends or non-cabled ends) pointing in the same direction (i.e. both cabled ends “up”, both cabled ends “down”, etc.). Failure to do this will impair the performance of the MINI-SCREEN System and result in incomplete guarding; see Figure 10a. Failure to observe this warning could result in serious injury or death.
3.2.4 Adjacent Reflective Surfaces

A reflective surface located adjacent to a defined area may deflect one or more beams of the light screen around an object which is in the defined area. In the worst case, an object may pass through the defined area undetected.

A reflective surface may be a part of the machine or the workpiece and may include shiny metal or plastic or surfaces with glossy paint. Where possible, reflective surfaces which are adjacent to the defined area should be roughened or covered with a dull material. Where this is not possible (as with a reflective workpiece), the sensor mounting should include a means of restricting the field of view of the receiver or the spread of the light from the emitter.

Beams deflected by reflective surfaces are discovered during the initial checkout procedure (Section 3.5.5), the final alignment and checkout procedure (Section 6.1), and also by the periodic checkout procedures (Sections 6.2, 6.3, and 6.4).

When this condition is discovered, eliminate the problem reflection(s):

- If possible, relocate the sensors to move the curtain of light beams away from the reflective surface(s). If relocating the sensors, be careful to retain at least the required separation distance (Section 3.2.1).

- Otherwise, paint, mask, or roughen the interfering shiny surface to reduce its reflectivity.

Use the trip test to verify that these changes have eliminated the problem reflection(s). If the workpiece is especially reflective and comes close to the light screen, perform the trip test with the shiny workpiece in place.

3.2.5 Use of Corner Mirrors

MINI-SCREEN sensors may be used with one or more corner mirrors. The use of corner mirrors somewhat reduces the maximum specified emitter/receiver separation. Corner mirrors and stands are available from Banner. See page 44 for more information.

Figure 11. Never use the MINI-SCREEN Sensors in a retroreflective mode.

WARNING . . . Installation Near Reflective Surfaces

A highly reflective surface (such as a shiny machine surface or a shiny workpiece) may reflect sensing light around an object in the defined area, preventing that object from being detected. This potentially dangerous condition is discovered using the “trip test” as described in the Initial Checkout Procedure (Section 3.5.5), the Alignment Procedure (Section 6.1), and the periodic checkout procedures (Sections 6.2, 6.3, and 6.4).

See text at left for solutions to this condition.

WARNING . . . Avoid Retroreflective Installation

The MINI-SCREEN System is not designed for use in a retroreflective mode where the sensors are mounted adjacent to each other and the light from the emitter is bounced back directly to the receiver by a mirror or other reflective surface. Never use MINI-SCREEN sensors in a retroreflective mode, as illustrated in Figure 11. Sensing is unreliable in this mode and could result in serious injury or death.
Installation of Adjacent Sensor Pairs

Whenever two or more sensor pairs are adjacent to one another, there is potential for optical crosstalk to take place between systems. To minimize optical crosstalk, it is recommended to alternate emitters and receivers, as shown in Figure 12.

When three or more sensor pairs are installed in a horizontal plane (as shown for two pairs in Figure 12a), optical crosstalk may occur between those sensor pairs whose emitter and receiver lenses are oriented in the same direction. In this situation, optical crosstalk may be controlled by mounting these sensor pairs exactly in line with each other within the same plane, or by adding a mechanical light barrier between the pairs.

Figure 12. Installation of adjacent sensor pairs; alternate emitters and receivers to avoid optical crosstalk.
3.3 Mounting Procedure

Sensor Mounting
Banner MINI-SCREEN emitters and receivers are small, lightweight, and easy to handle during mounting. The mounting brackets (supplied) allow ±30° rotation.

From a common point of reference, make measurements to locate the emitter and receiver in the same plane with their midpoints directly opposite each other. Mount the emitter and receiver brackets using the vibration isolators and M4 Keps nuts (all supplied). See Figure 13. Standard #8-32 bolts may be substituted (and the vibration isolators eliminated) in situations where the emitter and receiver are not subjected to shock or vibration forces. While the internal circuits of the emitter and receiver are able to withstand heavy impulse forces, the vibration isolators dampen impulse forces and prevent possible damage due to resonant vibration of the emitter or receiver assembly.

Mechanical Alignment
Mount the emitter and receiver in their brackets and position the red lenses of the two units directly facing each other. Important: The connector ends of both sensors must point in the same direction (see drawings and WARNING, page 19). Measure from one or more reference planes (e.g., the building floor) to the same point(s) on the emitter and receiver to verify their mechanical alignment. If the sensors are positioned exactly vertical or horizontal to the floor, a carpenter’s level is useful for checking alignment. A straightedge or a string extended between the sensors also helps with positioning. Also check “by eye” for line-of-sight alignment. Make any necessary final mechanical adjustments, and hand-tighten the bracket hardware. A detailed alignment procedure is given in Section 6.1.

The defined area of a MINI-SCREEN sensor is marked by two arrows on its lens side. The defined area is also specified by dimensions "X" and "Y" in Figure 15 on the next page. If corner mirrors are used, the center of the length of the defined area must be aligned with the center of the length of the mirror’s reflective area (see Figure 27, page 44).
Installation and Alignment

MSDINT-1 (Trip)/MSDINT-1L2 (Latch)

Figure 15. Emitter and receiver mounting dimensions and location of defined area

<table>
<thead>
<tr>
<th>Models*</th>
<th>Housing Length</th>
<th>Distance Between Bracket Holes</th>
<th>Defined Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE424 emitter</td>
<td>153 mm</td>
<td>188 mm</td>
<td>7.4"</td>
</tr>
<tr>
<td>MSR424 receiver</td>
<td></td>
<td>254 mm</td>
<td>10.0"</td>
</tr>
<tr>
<td>MSEB24 emitter</td>
<td>356 mm</td>
<td>389 mm</td>
<td>15.3"</td>
</tr>
<tr>
<td>MSR824 receiver</td>
<td></td>
<td>457 mm</td>
<td>18.0"</td>
</tr>
<tr>
<td>MSE1224 emitter</td>
<td>558 mm</td>
<td>592 mm</td>
<td>23.3"</td>
</tr>
<tr>
<td>MSR1224 receiver</td>
<td></td>
<td>659 mm</td>
<td>26.0"</td>
</tr>
<tr>
<td>MSE1624 emitter</td>
<td>761 mm</td>
<td>795 mm</td>
<td>31.3"</td>
</tr>
<tr>
<td>MSR1624 receiver</td>
<td></td>
<td>862 mm</td>
<td>33.9"</td>
</tr>
<tr>
<td>MSE2024 emitter</td>
<td>963 mm</td>
<td>998 mm</td>
<td>39.3"</td>
</tr>
<tr>
<td>MSR2024 receiver</td>
<td></td>
<td>1064 mm</td>
<td>41.9"</td>
</tr>
<tr>
<td>MSE2424 emitter</td>
<td>1166 mm</td>
<td>1201 mm</td>
<td>47.3"</td>
</tr>
<tr>
<td>MSR2424 receiver</td>
<td></td>
<td>1267 mm</td>
<td>49.9"</td>
</tr>
</tbody>
</table>

* Dimensions are the same for "XL," 60-foot range models.
Routing the Cables
Connect the shielded cables to the emitter and receiver and route them (per local wiring code for low-voltage dc control cables) to the control module mounting location. The same cable type is used for both emitter and receiver (two cables required per system). Cables may be cut to length at the time of installation. Emitter and receiver cables may not exceed 53 m (175') total length. Do not trim the cables until you are certain that you have routed all cables properly. The cable braid at the control module connection points may be either removed or twisted together with the drain wire (see page 28).

Control Module Mounting
Mount the MINI-SCREEN System control module inside a lockable enclosure which as a minimum rating of NEMA 3 (IP54). The control module may be mounted onto standard 35 mm DIN rail or may instead be mounted directly to the backplate of the lockable enclosure, using the supplied hardware.

The MINI-SCREEN control module should be configured before initial checkout and use. Control module configuration is done at the two banks of DIP switches located along the edge of the controller board (see Figure 18).

Key Reset Switch Mounting
The key reset switch mounts through a 19 mm (0.75") diameter hole (see Figure 19). Wires for connecting the key reset switch to the control module are user-supplied (also see Section 3.5.1).
3.4 Controller Module Configuration

The parameters to be manually configured are:

- Floating blanking: ON or OFF:
- Auto Power-up: ON or OFF:

NOTE: The factory setting for both parameters is OFF.

Because it has redundant microprocessors, the controller module has two identical DIP switch banks (bank A and bank B) which must be set identically. Failure to set both banks identically will cause a lockout condition when power is applied to the control box. **Power to the MINI-SCREEN System must always be OFF when changing switch settings.** Changing switch settings with power ON will cause a lockout condition. A switch pushed down is ON; a switch pushed up is OFF. Set the configuration switches as follows:

Floating blanking ON or OFF

Locate the floating blanking (FB) configuration switches in bank A and B (see Figure 18). Set the switches identically at banks A and B. Be aware of the difference in minimum object sensitivity, penetration factor, and required light screen separation distance between the settings (refer to Sections 2.1 and 3.2.1). Floating blanking causes the MINI-SCREEN System to ignore multiple objects of up to the size listed in the table, below.

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Floating Blanking</th>
<th>Maximum Size of Undetected Objects*</th>
<th>Minimum Object Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 m (30') range</td>
<td>OFF (Not applicable)</td>
<td>19.1 mm (0.75")</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>20.3 mm (0.80")</td>
<td>44.5 mm (1.75")</td>
</tr>
<tr>
<td>18 m (60') range</td>
<td>OFF (Not applicable)</td>
<td>25.4 mm (1.00")</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>16.5 mm (0.65")</td>
<td>50.8 mm (2.00")</td>
</tr>
</tbody>
</table>

* Assumes the object encounters the light screen perpendicular to the light beams.

Auto Power-up Feature ON or OFF

Locate the Auto Power-up (AP) configuration switch (see Figure 18) in banks A and B. If Auto Power-up is ON (switches pushed down) when power is applied to the MINI-SCREEN System, the controller will automatically reset after conducting and passing an internal system checkout. If the switches are OFF (pushed up), this initial reset is manual (via the key reset switch). Regardless of the setting of this switch, a key reset is always necessary to recover from an internal lockout condition. Latching output models also require a latch reset, following a key reset or following Auto Power-up. To select Auto Power-up, remove the protective coating on both switches and push them down, to the ON position. The switches must be set identically at banks A and B.
3.5 Electrical Hookup and Checkouts

Make the electrical connections in the order that they are presented in Sections 3.5.1 through 3.5.8.

The following wiring connections are made to the control module:
- Key reset switch
- Emitter and receiver cables
- System power
- Output relay connections (FSD1, FSD2, and SSD)
- Auxiliary Monitor (or Alarm) Relay connection
- Remote test device (or latch reset) input

Note that the wiring barriers on the module can accept conductors no larger than #12AWG. Also, the wires used should have an insulation temperature rating of at least 90°C (194°F).

3.5.1 Key Reset Switch Hookup

The key reset switch (supplied with the control module) must be positioned at a location that provides the switch operator with an unobstructed view of the entire defined area. The switch mounts through a 19 mm (0.75") diameter hole (Figure 19).

Wire is supplied by the user. Shielded cable and/or separate, grounded conduit is recommended. The wires from the key reset switch connect to terminals 8 and 9 of the control module (Figure 20).

3.5.1.1 Latch Reset Switch Hookup (Latching Output Models, Only)

For control module model MSDINT-1L2:

Because the latch reset switch is used to reset the latch, its mounting location is critical. It must be mounted outside of the guarded area, and in a location which provides an unobstructed view of the entire guarded area, including all danger points. In addition, it must NOT be possible to reach the key reset switch from inside the guarded area.

The latch reset switch is supplied by the user and may be any normally-open momentary or alternate-action switch. Connect the switch between terminals 4 and 5 of the control module (Figure 20). See warning, at right, regarding location of the latch reset switch.

Figure 19. Mounting the MINI-SCREEN key reset switch
3.5.2 Emitter and Receiver Hookup

Emitter and receiver cables both connect in parallel to wiring barrier terminals 13 through 17. Only the use of Banner QDC Series cables (see page 58) can ensure reliable communication of data between the controller and the sensors. Match the color-coded terminals of the wiring barrier to colors of the wires in each 5-conductor cable. **Double-check your wiring. Incorrect wiring can lead to component damage.** There are no user adjustments or connections inside the MINI-SCREEN emitter or receiver.

3.5.3 System Power (temporary connection)

The system is powered by 24V dc ±15% at 1.5 amps.

As shown in Figure 23 (page 32), the power supply lines to the control module connect through the MPCe monitor contacts of the guarded machine. **However, do not wire to the MPCeS at this time.** Instead, temporarily connect power directly to the control module at terminals 32 (+24V dc) and 33 (dc common). Connect earth ground at terminal 34. This will allow the MINI-SCREEN System to be checked out, by itself, before permanent power connections are made through the guarded machine's monitor contacts. **Permanent power connection will be made after MINI-SCREEN System initial checkout, and is covered in Section 3.5.6.**
3.5.4 MINI-SCREEN System Initial Checkout

This initial checkout procedure must be performed by a Qualified Person (see WARNING, page 14). It must be done after connecting the emitters and receivers (Section 3.5.1) and temporary power (Section 3.5.2) is applied to the MINI-SCREEN control module, but before the MINI-SCREEN System is connected to the machine to be guarded.

This initial checkout procedure must be performed by a Qualified Person:
- To ensure proper installation when the system is first installed, and
- To ensure proper system function whenever any maintenance or modification is performed on the system or on the machinery being guarded by the system. (See Section 4.2 for a schedule of required checkouts.)

![Diagram of Operating Status LED conditions. Status indicators are located on the control module and on the receivers.](image-url)

Figure 21. Operating Status LED conditions. Status indicators are located on the control module and on the receivers.
Initial Checkout Procedure:

The MINI-SCREEN System has three operating modes: POWER UP, KEY RESET, and RUN. Monitor the three status LEDs (red, yellow, and green, on the control module front panel or the receiver) and refer to Figure 21.

1) **Enter POWER UP mode** by applying power to the control module. With Auto Power-up OFF, the System will “power up” in a lockout condition (yellow status LED only will double-flash). With Auto Power-up ON, the System will automatically enter RUN mode (step 3).

2) **Enter KEY RESET mode** by turning the key to the RESET position. The yellow panel LED will go ON.

Hold the switch in the RESET position for at least one-half second. This allows time for the microprocessors to run a startup diagnostic check routine.

3) **Enter RUN mode** by turning the key from the RESET position to the RUN position.

If the red status LED (only) lights and flashes when the system is placed in RUN mode, an internal lockout condition exists. Refer to Section 5.1 to determine the cause of the lockout.

If the red and yellow status LEDs come ON, the defined area is not clear (one or more light beams are obstructed) or the light screen is misaligned. This is a trip condition (for control module MSDINT-1L2, this is a latch condition). If this occurs, check the defined areas for obstruction(s). The red LED will be ON. The yellow LED will be flashing to indicate the relative number of made (cleared) light beams; the faster the flash rate, the more beams are “made.”

If the MINI-SCREEN System is properly aligned, the blanking switches are properly set and all obstructing objects are removed from the defined area, the green and yellow status LEDs (plus the red LED on Latch output models) should come ON after step #3 is performed (the green LED will flash if blanking is ON, but the yellow status LED should be ON steadily). **If you are setting up the MINI-SCREEN System for the first time, or if the green and yellow status LEDs do not come ON in step #3, perform the alignment procedure below.**

Adjusting the Light Screen Alignment

If the red and yellow status LEDs are ON and there is no obstruction in either defined area, then one or both light screen(s) is misaligned. Monitor the yellow indicator LEDs on the receiver(s) and the yellow Alignment indicator on the control module to determine the alignment status. If the light screen is aligned, the LEDs will be ON steady. If the alignment is inadequate, the LEDs will be flashing; the faster the flash, the better the alignment. Rotate and/or tip the emitter and receiver until the LEDs come ON steady.

When you are certain that the emitter and receiver are aligned properly, tighten all emitter and receiver hardware in position and repeat steps #1-3, above.

For Latching Output Models: Reset the latch by momentarily closing the user-supplied switch connected between terminals 4 and 5 of the control module (Figure 20). The red LED will go OFF and the green and yellow LEDs will remain ON.
4) **Next**, “trip test” the MINI-SCREEN for object detection capability using the specified test pieces supplied with the control box. To perform the trip test, the key switch must be in the RUN position, the yellow status LED must be ON steadily, and the green status LED must either be ON steadily (to indicate blanking OFF) or flashing (to indicate blanking ON).

![Figure 22. MINI-SCREEN System Trip Test](image)

The MINI-SCREEN control module comes with four specified test pieces. Select the proper test piece based on system configuration, per the following chart:

<table>
<thead>
<tr>
<th>Floating Blanking Program</th>
<th>30' Range Emitters and Receivers</th>
<th>60' Range Emitters and Receivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating blanking OFF</td>
<td>19.1 mm (0.75") dia. Model STP-2</td>
<td>25.4 mm (1.00") dia. Model STP-7</td>
</tr>
<tr>
<td>Floating blanking ON</td>
<td>44.5 mm (1.75") dia. Model STP-3</td>
<td>50.8 mm (2.00") dia. Model STP-8</td>
</tr>
</tbody>
</table>

Slowly pass the specified test piece down the length of the defined area at three points: close to the receiver, close to the emitter, and midway between them (Figure 22). In each case, the red status indicator should come ON and remain ON for as long as the test piece is within the defined area. When the test piece is withdrawn from the defined area, the green status indicator should come ON. If the green indicator comes ON at any time when the test piece is within the defined area, check for reflective surfaces, and correct the problem.

For **Control Module MSDINT-1L2**: After performing the trip test, perform a latch reset.

If the MINI-SCREEN System passes all of the checks in Section 3.5.3, go on to Section 3.5.4.

If the MINI-SCREEN System fails any of these checks, *do not attempt to use it until the reason for the failure(s) is identified and the failures are corrected.*
3.5.5 Output Relay Connections

Output relay connections are made at the FSD1 (Final Switching Device 1), FSD2 (Final Switching Device 2), and SSD (Secondary Switching Device) terminals on the control module (Figure 23). These relays are energized (contacts closed) in normal operation with no obstructions in the defined area. All relays become de-energized (their contacts open) in a lockout condition. Relays FSD1 and FSD2 (only) de-energize in a trip or latch condition. Before continuing, read NOTICE regarding MPCEs, below, right.

The FSD1 output relay connects to Machine Primary Control Element #1 (MPCE 1) on the guarded machine. MPCE 1 is an electrically powered element of the guarded machine that directly controls the normal operating motion of the machine in such a way that it is last (in time) to operate when motion is either initiated or arrested. The output contact of relay FSD1 must be connected, as shown in Figure 23, to control power to Machine Primary Control Element #1. The switching capacity of relay FSD1 is 250V ac max., 4 amps max. (resistive load).

The FSD2 output relay connects to Machine Primary Control Element #2 (MPCE 2) on the guarded machine. MPCE 2 is an electrically powered element of the guarded machine (in a different control path than MPCE 1) that directly controls the normal operating motion of the guarded machine in such a way that it is last (in time) to operate when machine motion is either initiated or arrested. The output contact of relay FSD2 must be connected, as shown in Figure 23, to control power to Machine Primary Control Element #2. The switching capacity of relay FSD2 is 250V ac max., 4 amps max. (resistive load).

Many different types of mechanisms are used to arrest dangerous machine motion. Examples include mechanical braking systems, clutch mechanisms, and combinations of brakes and clutches. Additionally, control of the arresting scheme may be hydraulic or pneumatic.

As a result, MPCEs may be of several control types, including a wide variety of contactors and electromechanical valves. If your machine documentation leaves any doubt about the proper connection points for the MINI-SCREEN System output relay contacts, do not make any connections. Contact the machine builder for clarification regarding connections to the MPCEs and MSCE.

The SSD output relay connects to the Machine Secondary Control Element (MSCE) on the guarded machine. The MSCE is an electrically powered element of the guarded machine (independent of the MPCEs) that is capable of removing power from the prime mover of the dangerous part of the machine in the event of an emergency. The output contacts of the SSD relay must be connected, as shown in Figure 23, to the Machine Secondary Control Element so that, if a lockout condition occurs, the motive power will be removed from the machine. The switching capacity of the SSD relay is 250V ac max., 4 amps max. (resistive load).

NOTICE regarding MPCEs

Each of the two Machine Primary Control Elements (MPCE 1 and MPCE 2) must be capable of immediately stopping the dangerous machine motion, irrespective of the state of the other. These two channels of machine control need not be identical, but the stop time performance of the machine (Ts, used to calculate the separation distance) must take into account the slower of the two channels.

Some machines offer only one primary control element. For such machines, it is necessary to duplicate the circuit of the single MPCE to add a second machine primary control element (per ANSI B11, Section 5.5 “Control Reliability”). Refer to Figure 23 (page 32) or consult the machine manufacturer for additional information.
Figure 23 (below) shows output relay connections in a generic interfacing situation. The connections between the MINI-SCREEN System outputs and the machine primary and secondary control elements must be direct, and arranged so that any single line fault or earth fault will not result in a circuit failure to a potentially dangerous state.

WARNING . . .

Use of Trip Output MINI-SCREEN Systems for Perimeter Guarding

If a trip-output MINI-SCREEN System is installed for use as a perimeter guarding system, the dangerous machine motion must be able to be initiated following an interruption of the defined area only after actuation of a reset switch.

The reset switch must be located outside of the area of dangerous motion, and must be positioned so that the area of the dangerous motion may be observed by the switch operator during the reset operation. Additional safeguarding, as described by the ANSI B11 series of safety requirements or other appropriate standards, must be used if any space between either defined area and any danger point is large enough to allow a person to stand undetected by the MINI-SCREEN System. Failure to observe this warning could result in serious injury or death.

WARNING . . .

Arc Suppressors

Arc suppressors, if used, must be installed as shown across the coils of the machine control elements. NEVER install suppressors directly across the contacts of the MINI-SCREEN switching devices! It is possible for suppressors to fail as a short circuit. If installed directly across the contacts of a MINI-SCREEN switching device, a short-circuited suppressor will create an unsafe condition.

WARNING . . .

Use All Output Contacts

All MINI-SCREEN System output contacts (FSD1, FSD2, and SSD) must be used. The generalized wiring configuration, shown here, is provided only to illustrate the importance of proper installation. The specific wiring of the MINI-SCREEN system to any particular machine is solely the responsibility of the installer and end user.

Figure 23. Generic machine interface, MINI-SCREEN System
NOTICE regarding MPCE Monitoring Hookup

It is strongly recommended that one normally open and one normally closed auxiliary contact of each MPCE be wired (as shown in Figure 23, page 32) as MPCE monitor contacts. If this is done, any inconsistency of action between the two MPCEs will remove power from the MINI-SCREEN System, causing a lockout condition (assuming Auto Power-up feature is not in use). The use of MPCE auxiliary contacts as MPCE monitor contacts is necessary in order to maintain redundancy. MPCE auxiliary contacts used for this purpose must be rated at 55 VA minimum.

In order to maintain redundancy, the MPCE monitor contacts must be wired as described in section 3.5.5 and Figure 23, page 32.

3.5.6 System Power (permanent connection)

After the initial checkout of Section 3.5.4 has been successfully completed, the power lines to the MINI-SCREEN System must be re-routed to their permanent hookup through the MPCE monitor contacts of the guarded machine. This is important: it ensures that any inconsistency in action between the two MPCEs will remove power from the system. (This is discussed in the NOTICE regarding MPCE Monitoring Hookup, left).

Connection of system power is at the +24V dc (terminal 32) and the dc common (terminal 33) terminals of the control module (Figure 20, page 27). Do not operate the MINI-SCREEN System without an earth ground connection (terminal 34).

After power has been connected to the MINI-SCREEN System and the output relay contacts have been connected to the machine to be controlled, the operation of the MINI-SCREEN System with the guarded machine must be verified before the combined system may be put into service. To do this, a Qualified Person must perform the Commissioning Checkout Procedure (Section 6.2, page 45).
3.5.7 Auxiliary Monitor Relay or Alarm Relay

The action of the Auxiliary Monitor Relay contact (control module model MSDINT-1) “follows” the action of output relays FSD1 and FSD2. The Auxiliary Monitor Relay contact is a light-duty contact used for control functions that are not safety-related. A typical use is to communicate with a programmable logic controller (PLC). The switching capacity of the Auxiliary Monitor Relay is 125V ac or dc max., 500 mA max. Connection to the Auxiliary Monitor Relay contact is made at terminals 1 and 2 (Figure 20).

Terminals 1 and 2 of control module model MSDINT-1L2 (latching output) are labeled “Alarm”. The Alarm Relay output has the same description as the Auxiliary Monitor Relay (see above), except that the contact closes whenever the defined area has been blocked (corresponding to a latch output of FSD1 and FSD2). The Alarm Relay contact opens when a latch reset is performed, if the defined area is clear. The Alarm Relay contact closes when a system lockout occurs. See Figure 5 on page 10.

3.5.8 Remote Test Input or Latch Reset Input

Remote Test Input (control module model MSDINT-1) connects to Test 1 and Test 2, terminals 4 and 5 (see Figure 20, page 27). When connected together (shorted) for a minimum of 50 milliseconds, these terminals provide the MINI-SCREEN System with the equivalent of a blocked beam condition, for testing purposes. The switch or switching device used to short the test contacts must be capable of switching 15 to 50V dc at 20 to 100 mA dc.

Terminals 4 and 5 of control module MSDINT-1L2 (latching output) are used for resetting the latched output. A user-supplied normally-open latch reset switch must be capable of switching 15 to 50V dc at 20 to 100 mA dc.
4. Operating Instructions

4.1 Security Protocol

The MINI-SCREEN control module must be installed inside a lockable enclosure which has a NEMA 3 (IP54) or better rating. To prevent access by unauthorized personnel, and to ensure that all lockout conditions come to the attention of a person who is qualified to deal with them, the key (or combination or tool) to the locking mechanism must be kept in the possession of a Qualified Person as defined in ANSI/ASME B30.2-1983 (see Glossary). Only Qualified Persons should have access to the interior of the MINI-SCREEN control module.

The key to the Reset switch should be available to a Designated Person or persons. A Designated Person is one who is identified and designated in writing, by the employer, as being appropriately trained and qualified to perform a specified checkout procedure. A machine operator who meets these requirements may be a Designated Person.

Additional keys are available. See page 61.

4.2 Periodic Checkout Requirements

In addition to the checkouts that are performed by a Qualified Person or persons at the time that the MINI-SCREEN System is installed and put into service, the functioning of the MINI-SCREEN System and the guarded machine must be verified on a regular periodic basis to ensure proper operation. This is absolutely vital and necessary. Failure to ensure proper operation can lead to serious injury or death.

Checkouts must be performed according to checkout procedure 6.3, page 48 as follows:

1) By a Designated Person at every power-up of the MINI-SCREEN System;
2) By a Qualified Person following the correction of every lockout condition;
3) By a Designated Person at every shift change or machine setup change.

Checkouts must be performed according to checkout procedure 6.4, page 49:

1) By a Qualified Person semi-annually (every 6 months) following installation of the MINI-SCREEN System.

4.3 Normal Operation

Power-up

NOTE: Key must be in the RUN position at power-up.

If the Auto Power-up feature is ON when ac power is applied to the System, the controller performs a system checkout and resets itself, without the need for a key reset. If the Auto Power-up feature is OFF when ac power is applied to the MINI-SCREEN System, it is normal for it to power up into a lockout condition.
To prepare the MINI-SCREEN System for operation after a power-up lockout, the Designated Person must perform a key reset:

a) Turn the key to the RESET position (yellow LED goes ON steadily).

Wait at least one-half second, then

b) Turn the key to the RUN position.

If the defined area is clear, the green and yellow LEDs will go ON; the red LED goes OFF for trip-output models, and ON for latch-output models. (If floating blanking is ON, the green LED will be flashing.)

If the emitter and receiver are misaligned, the red LED will come ON. The yellow LED will single-flash at a rate that indicates the relative number of light beams established. To align the light screen, see Sections 3.3 and 3.5.5.

If the emitter and receiver are aligned, but the defined area is blocked, the red LED will come ON, and the yellow LED will single-flash at a rate that indicates the relative number of light beams established. Remove the blockage and verify that the green LED is ON or flashing, indicating a clear light screen (it will flash if blanking is ON).

Trip output models: No further action is necessary; system should be in RUN mode.

Latch output models: Perform a latch reset to reset the latch condition. The system should go into Run mode.

Floating Blanking Operation
With floating blanking ON, one or more objects, each up to the size listed in the table below, may enter the defined area at any point without causing a trip or latch condition. The use of floating blanking also decreases the minimum object sensitivity, as indicated in the table below.

<table>
<thead>
<tr>
<th>Floating Blanking</th>
<th>30' Range Emitters and Receivers</th>
<th>60' Range Emitters and Receivers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum Object Sensitivity</td>
<td>Maximum Size of Undetected Objects</td>
</tr>
<tr>
<td>Floating Blanking OFF</td>
<td>19.1 mm (0.75")</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Floating Blanking ON</td>
<td>44.5 mm (1.75")</td>
<td>20.3 mm (0.80")</td>
</tr>
</tbody>
</table>

The use of floating blanking increases the depth penetration factor (D_{pf}) and also, therefore, the separation distance required between the defined area and the closest machine danger point. If the separation distance was calculated on the basis of no floating blanking and floating blanking is later used, OSHA regulations require the separation distance to be increased accordingly. See Section 3.2.1.

Upon power-up (and also at every shift change or machine setup change), checkout procedure 6.3 on page 48 must be performed.
5. Troubleshooting and Maintenance

5.1 Troubleshooting Lockout Conditions

A lockout condition of the MINI-SCREEN System causes all of its output relays to open, sending a “stop” signal to the guarded machine.

A Power-up/Power Interrupt Lockout condition will occur:

- Upon power-up of the MINI-SCREEN System (unless Auto Power-up is ON; see Figure 5, page 11), or
- If power to the MINI-SCREEN System is interrupted (unless Auto Power-up is ON; see Figure 5).

An Internal Lockout condition will occur:

- If the Key Reset switch is in the RESET position at power-up (with Auto Power-up ON); or if the switch is switched to RESET while the system is in RUN mode,
- If a Final Switching Device (FSD - see Glossary) relay does not “drop out” within its specified time,
- If the Secondary Switching Device (SSD - see Glossary) relay has de-energized,
- If the controller module switch settings are inconsistent with each other or if they were changed while the system was in RUN mode,
- If the self-checking circuits of the microprocessor detect a component failure within the MINI-SCREEN System itself.

A lockout condition resulting from an internal system fault is indicated by a flashing red LED on the control module and the receiver. The green and yellow LEDs will be OFF. See Figure 5, page 11.

Power-up/power interrupt lockouts (Auto Power-up OFF; yellow LED only double-flashing) are normal and require a key reset for operation to continue.

Use the following key reset procedure to resume operation after a power interruption:

a) Turn the key to the RESET position (yellow status indicator LED should light) and wait at least one-half second, then
b) Turn the key to the RUN position.

If the defined area is clear and the emitter and receiver are properly aligned, the green and yellow LEDs will light.

If the lockout condition was due to a momentary power interruption that has been corrected, the MINI-SCREEN System will now operate normally.

Upon recovery from a power interruption, checkout procedure 6.3 on page 48 must be performed.
If the Status Indicator LEDs will not operate, the lockout condition is due to another cause (an internal lockout condition). In this case, a Qualified Person must note the state of the Diagnostic Indicator LEDs (refer to Figure 24, below). If one or more of the red Diagnostic Indicator LEDs is ON, the cause of the lockout condition is within the MINI-SCREEN System.

The MINI-SCREEN System will not operate if its self-checking circuits have detected an internal problem. Take the corrective measure(s) shown in Figure 24 for the listed error number and related problem. If further assistance is required, contact your Banner field service engineer or the factory Applications Engineering Department.

If no Diagnostic Indicator LEDs are ON, power to the system may have been lost. The green LED on the power supply board (remove cover of module to view) indicates the presence (LED ON) or absence (LED OFF) of dc power at the power supply board. It is possible for power to be present at the input of the power supply, even if the dc power LED is OFF.

Check for voltage across the +24V dc and dc common terminals 32 and 33. If voltage is not present, power to the MINI-SCREEN System has been lost, and the cause is outside the system. If 24V dc is present, turn off the power to the control module and check the fuse (section 5.3.1). If the fuse is bad, replace it. If the fuse is good, and 24V dc is present at terminals 32 and 33, an internal power supply failure has occurred.

Figure 24. Interpretation of Diagnostic Indicator LEDs

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Error Type / Action</th>
<th>Error No.</th>
<th>Error Type / Action</th>
<th>Error No.</th>
<th>Error Type / Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SYSTEM IS O.K.</td>
<td>1</td>
<td>RELAY SIGNAL ERROR</td>
<td>2</td>
<td>CPU ERROR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>REPLACE RELAY MODULE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RECEIVER ERROR</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Emitter ERROR</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Intermittently flashing #4 red LED indicates presence of optical or electrical "noise".
- Green LED indicator is always "ON" except when a CPU failure is detected.

See Section 5.2 for further information about electrical and optical "noise".

Red | 1
Red | 2
Red | 4
Green | 5

Binary Value

Banner Engineering Corp. - Minneapolis, U.S.A
www.bannerengineering.com • Tel: 763.544.3164
5.2 Effects of Electrical and Optical Noise

The MINI-SCREEN System is designed and manufactured to be highly resistant to noise and to operate reliably in industrial settings. However, serious electrical and/or optical noise may cause a random trip or latch condition. In very extreme cases, a lockout is possible. In order to minimize the effects of transitory noise, the MINI-SCREEN System will respond to noise only if the noise is detected on multiple consecutive scans. Red Diagnostic Indicator LED #4 will flash to indicate the presence of electrical or optical noise. This LED can be used to track down particularly offensive noise sources (see sidebar). Simply observe the LED while shutting down or isolating the suspected sources.

5.3 Servicing and Maintenance

5.3.1 Fuse Testing and Replacement

Remove all power to the control module and to the machine being controlled before proceeding.

The MINI-SCREEN System control module fuse is located in a fuseholder on the power supply board, immediately beneath the removable top cover plate. Remove the control module cover plate by gently prying it up and off using a flat-blade screwdriver or similar tool.

Remove the fuse from the fuse holder. Visually inspect the fuse and/or test its conductivity using an ohm meter or a continuity tester. The fuse is a 3AG or 5 x 20 mm slow-blow type (see Specifications, pages 56-57).

5.3.2 Control Module and Relay/Power Supply Replacement

MINI-SCREEN Systems are designed for reliability. While replacement of the controller module and relays is not normally required, these components have been designed to be easily replaceable as a convenience to the customer. To maintain control reliability, use only Banner-supplied replacement relays with forced-guided contacts; see page 61.
Troubleshooting and Maintenance

NOTE: Do not open the emitter or receiver housing. The emitter and receiver contain no field-replaceable components. If repair is necessary, return the unit to the factory (see section 5.3.4). Do not attempt to repair an emitter or receiver yourself.

5.3.3 Cleaning

The MINI-SCREEN System control module is constructed of black polycarbonate and is rated NEMA 1 (IP20). No cleaning is recommended; avoid contact with any liquid.

MINI-SCREEN emitters and receivers are constructed of aluminum with a black anodized or a yellow painted finish and are rated NEMA 4, 13 (IP65). Lens covers are acrylic. Emitters and receivers are best cleaned using mild detergent or window cleaner and a soft cloth. **Avoid cleaners containing alcohol,** as they may damage the acrylic lens covers.

5.3.4 Warranty Service

If it ever becomes necessary to return a MINI-SCREEN component to the factory, please do the following:

1) Contact the Banner Factory Application Engineering group at the address or numbers listed below.

Banner Engineering Corp.
9714 - 10th Avenue No.
Minneapolis, MN 55441
Phone: 888.373.6767
email: sensors@baneng.com

They will attempt to troubleshoot the system from your description of the problem. If they conclude that a component is defective, they will issue an RMA (Return Merchandise Authorization) number for your paperwork, and give you the proper shipping address.

2) Pack the component(s) carefully. Damage which occurs during return shipping is not covered by warranty.
6. Alignment and Checkout

Study each procedure from beginning to end to make sure that you understand each step before you start. Refer all questions to the Banner Applications Engineering Department (see page 2).

Section 6.1 is a procedure for optically aligning a MINI-SCREEN System. Sections 6.2, 6.3, and 6.4 are periodic performance checkout procedures for the MINI-SCREEN System, and are performed according to the schedule given in Section 4.2.

6.1 MINI-SCREEN System Alignment

This alignment procedure begins with the assumption that the system emitter and receiver have been mechanically aligned as described in Section 3.3.

Follow the measures outlined below to maximize light screen excess gain. If there are reflective surfaces near either defined area, read alignment step #5 (page 43) before proceeding further, to prevent possible reflection problems.

Only a Qualified Person may align the MINI-SCREEN System, as follows:

1) Turn off power to the MINI-SCREEN System and to the guarded machine. Leave power to the guarded machine OFF, and power-up the MINI-SCREEN System only.

2) The MINI-SCREEN will power up into a power-up lockout condition (unless Auto Power-up is ON). Remove all obstructions from the defined area and reset the MINI-SCREEN System as follows:

 - a) Turn the Key Reset switch to the RESET position,
 - b) Leave the key in the RESET position for at least 1/2 second to allow time for internal system checks, and
 - c) Turn the Key Reset switch to the RUN position.

 Note: Latch output models require a latch reset following the key reset (see Section 3.5.1.1 and 3.5.4). The red LED indicator will be ON following the key reset but will go OFF after the latch output is reset. The alarm contact for latch output models will close when the defined area is blocked (system becomes latched) and will open when the latch output is reset. See page 34.
Alignment and Checkout

MINI-SCREEN
MSDINT-1 (Trip)/MSDINT-1L2 (Latch)

3) Upon completion of the key reset (step #2), the MINI-SCREEN will indicate either a BLOCKED or a CLEAR condition:

 a) A BLOCKED condition is indicated by the red LED ON steadily and the yellow LED flashing at a rate proportional to the number of aligned, unblocked beams. Go to step #4.

 b) A CLEAR condition is indicated by the red LED OFF (trip-output models) or the red LED ON (latch-output models), and the green and yellow LEDs ON steadily. (The green LED will flash if blanking is ON.) Further alignment is not necessary.

Latch output models require a latch reset at this time by momentarily closing the switch connecting terminals 4 and 5.

4) A BLOCKED condition after reset indicates that one or more of the beams is misaligned or interrupted. When this occurs:

 a) Check carefully for obstructions in the path of the beams within the defined area (the limits of which are indicated in Figure 15, page 23). Remove any obstructions found.

 b) Loosen the hardware which fastens the receiver to its mounting brackets. Slowly rotate the receiver first to the right and then to the left while watching the LED indicators at the base of the receiver. The flash rate of the yellow LED increases as alignment improves.

 c) If the green LED does not come ON, regardless of angular position of the receiver, then loosen the emitter and rotate both sensors relative to each other until the green LED comes ON. Secure the emitter and receiver in the center of the area of rotation where the green and yellow LEDs are ON steadily. (The green LED will flash if blanking is ON. For latch output models, the red LED will also be ON steadily until the latch is reset; momentarily close the switch connected to terminals 4 and 5.)

 d) If the green LED still fails to come ON, then re-check the sensor mounting per the procedure in Section 3.3, and then re-align per this alignment procedure.

5) “Trip test” the MINI-SCREEN System for object detection capability using the test piece(s) supplied with the control module. To perform this test, the Key Reset switch must be in the RUN position and the green and yellow LEDs must be ON steadily. (The green LED will flash if blanking is ON.) Reset the system (Key Reset), if necessary, to attain this condition.

The MINI-SCREEN control module comes with four test pieces. Select the proper test piece based on system configuration, per the following chart:

<table>
<thead>
<tr>
<th>Floating Blanking Program</th>
<th>30' Range Emitters and Receivers</th>
<th>60' Range Emitters and Receivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating blanking OFF</td>
<td>19.1 mm (0.75") dia. Model STP-2</td>
<td>25.4 mm (1.00") dia. Model STP-7</td>
</tr>
<tr>
<td>Floating blanking ON</td>
<td>44.5 mm (1.75") dia. Model STP-3</td>
<td>50.8 mm (2.00") dia. Model STP-8</td>
</tr>
</tbody>
</table>
Perform the trip test as follows:
Pass the appropriate specified test piece downward through the defined area at three points (see Figure 26):

a) close to the receiver,
b) close to the emitter, and
c) midway between the emitter and receiver.

In each case, the red indicator must come ON and remain ON while the test piece is within the defined area. (For controller MSDINT-1L2: reset the latch after performing each trip test pass.)

The green indicator must come ON only when the test piece is withdrawn from the defined area. (The yellow indicator stays ON when the test piece is in the light screen.) If the green indicator comes ON at any time when the test piece is within the defined area, the cause may be from light reflected from the emitter to the receiver by a nearby reflective surface (see page 20). If a reflective surface is identified, move either the defined area (by moving the sensors) or the reflective surface. Be sure to maintain at least the minimum required separation distance (see Section 3.2.1). Alternately, take measures to reduce the reflectivity of the interfering surface (i.e., by angling, painting, or masking).

WARNING... Do Not Use Machine Until System Is Working Properly

If all of the described checks cannot be verified, DO NOT USE the MINI-SCREEN System/guarded machine until the defect or problem has been corrected (see Section 5). Doing so could result in serious bodily injury or death.

Figure 26. MINI-SCREEN trip test
Use of Corner Mirrors

The MINI-SCREEN System emitters and receivers may be used with one or more MSM Series corner mirrors for guarding along more than one side of an area.

The Accessories section lists the 12 available lengths of corner mirrors (see page 62). These are rear-surface glass mirrors which are rated at 85 percent efficiency. Sensing range (and therefore excess gain) is reduced when using mirrors. The following table lists the resultant range when using from one to four MSM Series corner mirrors in the sensing path.

<table>
<thead>
<tr>
<th>Number of Corner Mirrors</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 m (30') range sensors</td>
<td>8.5 m</td>
<td>7.8 m</td>
<td>7.2 m</td>
<td>6.7 m</td>
</tr>
<tr>
<td></td>
<td>(28')</td>
<td>(25.5')</td>
<td>(23.5')</td>
<td>(22')</td>
</tr>
<tr>
<td>18 m (60') range sensors</td>
<td>16.8 m</td>
<td>15.5 m</td>
<td>14.3 m</td>
<td>13.1 m</td>
</tr>
<tr>
<td></td>
<td>(55')</td>
<td>(51')</td>
<td>(47')</td>
<td>(43')</td>
</tr>
</tbody>
</table>

Mirrors should be securely mounted to a solid surface that is free from vibration. Using a level, mount the mirror(s) exactly parallel to (in the same plane as) sensors, with the midpoint of the mirror(s) directly in line with the midpoint of the sensors’ defined area. The upper and lower limits of the defined area of MINI-SCREEN sensors is marked by arrows along the edge of each sensor window, and is dimensioned in the chart on page 23.

Adjust the corner mirror(s) so that the angle of incidence of light to the mirror equals the angle of reflection from the mirror. Referring to Figure 27, below, sight from behind one of the sensors directly towards the mirror (or the first mirror in line). When alignment is correct, you will see the straight and centered reflection of the lens of the other sensor in the mirror. Accessory laser alignment tool, model LAT-1, is available to assist alignment (see page 62).

Use the yellow alignment indicator LED for final alignment. Refer to the data sheet (P/N 43685) packed with each MSM Series corner mirror for complete information on the use of corner mirrors.

![Figure 27. Corner mirror alignment](image)

WARNING . . . Use Supplemental Sensing Devices if Necessary

Additional safeguarding, as described by the ANSI B11 series of safety requirements or other appropriate standards, must be used if any space between either defined area and any danger point is large enough to allow a person to stand undetected by the MINI-SCREEN System. Failure to observe this warning could result in serious injury or death.

See, also, the warning on page 32 regarding use of the Trip Output MINI-SCREEN System for perimeter guarding, and Section 3.2.2.1 about Pass-Through Hazards.
6.2 Commissioning Checkout (To Be Performed at Installation)

This commissioning checkout must be done by a Qualified Person who possesses all of the manufacturer-provided information on the MINI-SCREEN System and guarded machine and who, by possession of a recognized degree or certificate of professional training or who, by extensive knowledge, training, or experience, has successfully demonstrated the ability to solve problems relating to the installation, operation, and maintenance of optoelectronic machine guards.

A copy of checkout results should be kept in the employer's files; see OSHA 1910.217(e)(1). The Qualified Person must:

1) Examine the guarded machine to verify that it is of a type and design compatible with the MINI-SCREEN System. See page 2 for a list of misapplications.

2) Verify that the minimum separation distance from the closest hazard point of the guarded machine to the defined area is not less than the calculated distance (see Figure 28).

3) Verify that access to any dangerous parts of the guarded machine is not possible from any direction not protected by the MINI-SCREEN System, hard guarding, or supplemental guarding, and verify that all supplemental guarding devices and hard guarding are in place and operating properly.

4) Verify that it is not possible for a person to stand between the defined area and the dangerous parts of the guarded machine. Or, verify that supplemental presence-sensing devices (as described by ANSI B11 safety requirements or other appropriate standards) are in place and functioning properly in any space between the defined area and any danger point large enough to allow a person to stand undetected by the MINI-SCREEN System.

5) Examine the electrical wiring connections between the MINI-SCREEN output relays and the guarded machine's control elements to verify the requirements stated in Section 3.5.6.

The formula used to calculate the separation distance is:

\[D_s = K \times (T_s + T_r) + D_{pf} \]

where:

- \(D_s \) = the separation distance;
- \(K \) = the OSHA-recommended hand speed constant of 63" per second (NOTE 1, below);
- \(T_s \) = the overall stop time of the machine measured from the application of the “stop” signal to the final ceasing of all motion (including stop times of all relevant control elements, and measured at maximum machine velocity). See NOTE 2, below.
- \(T_r \) = the response time of the MINI-SCREEN System:
 - .048 seconds for 4.5" to 16" emitter/receiver,
 - .060 seconds for 20" to 32" emitter/receiver,
 - .072 seconds for 36" to 48" emitter/receiver
- \(D_{pf} \) = the added distance due to depth penetration factor, as prescribed in OSHA 1910.217 and ANSI B11 standards:

<table>
<thead>
<tr>
<th>Floating Blanking</th>
<th>30' Range Sensors</th>
<th>60' Range Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>(D_{pf} = 1.6")</td>
<td>(D_{pf} = 2.5")</td>
</tr>
<tr>
<td>On</td>
<td>(D_{pf} = 5.0")</td>
<td>(D_{pf} = 5.9")</td>
</tr>
</tbody>
</table>

NOTES:

1) The OSHA-recommended hand-speed constant \(K \) has been determined by various studies, and although these studies indicate speeds of 63"/sec to over 100"/sec, they are not conclusive determinations. The employer should consider all factors, including the physical ability of the operator, when determining the value of \(K \) to be used.

2) \(T_s \) is usually measured by a stop-time measuring device. If the specified machine stop time is used, we recommend that at least 20% be added as a safety factor to account for clutch/brake system deterioration.

3) Use of floating blanking will always cause the required \(D_s \) to increase.

Figure 28. Calculation of \(D_s \)
6) Test the effectiveness of the MINI-SCREEN System with system power ON. The MINI-SCREEN control box comes with four test pieces. Select the proper test piece based on system configuration, per the chart below.

<table>
<thead>
<tr>
<th>Floating Blanking Program</th>
<th>30' Range Emitters and Receivers</th>
<th>60' Range Emitters and Receivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating blanking OFF</td>
<td>19.1 mm (0.75") dia. Model STP-2</td>
<td>25.4 mm (1.00") dia. Model STP-7</td>
</tr>
<tr>
<td>Floating blanking ON</td>
<td>44.5 mm (1.75") dia. Model STP-3</td>
<td>50.8 mm (2.00") dia. Model STP-8</td>
</tr>
</tbody>
</table>

![MINI-SCREEN trip test](image)

Figure 6-6. MINI-SCREEN trip test

WARNING . . . Do Not Use Machine Until System Is Working Properly

If all of the described checks cannot be verified, DO NOT USE the MINI-SCREEN System-guarded machine until the defect or problem has been corrected (see Section 5). Doing so could result in serious injury or death.
Alignment and Checkout

a) Verify that the MINI-SCREEN System is in RUN mode:
 - Green and yellow Light Screen and System status indicators ON.
 See Section 5.1 for Key Reset procedure. The green Light Screen indicator will flash if blanking is programmed.

b) With the guarded machine at rest, slowly pass the appropriate specified test piece downward through the defined area at three points, perpendicular to the defined area:
 - Close to the receiver,
 - Close to the emitter, and
 - Midway between the emitter and receiver.

When the test piece is within the defined area, verify:
 - The red LED comes ON and remains ON while the test piece is within the defined area.
 - The green LED remains OFF.

When the test piece is removed from the light screen, verify:
 - The green LED comes ON.
 If the green LED comes ON at any time when the test piece is within the defined area, check for reflective surfaces (see Warnings, page 20). Do not continue until the situation is corrected.

c) Initiate machine motion of the guarded machine and, during motion, insert the appropriate test piece into the light screen, perpendicular to it. Do not attempt to insert the test piece into the dangerous parts of the machine.

Verify that when the test piece is inserted into the defined area at any time during machine motion:
 - The dangerous parts of the machine come to a stop with no apparent delay.

Remove the test piece from the defined area (and reset the latch output on Latching models), verify:
 - The machine does not automatically restart, and the initiation devices must be engaged to restart the machine.

d) With the guarded machine at rest, insert the appropriate test piece into the defined area and verify:
 - The guarded machine cannot be put into motion while the test piece is within the defined area.

7) Remove electrical power to the MINI-SCREEN System. Verify:
 - All output relays immediately de-energize, and cannot be reactivated until power is re-applied and a System Key Reset is performed (unless both Auto Power-up features are ON).

8) Test the machine stopping response time using an instrument designed for that purpose to verify that it is the same or less than the overall system response time specified by the machine manufacturer. (NOTE: Banner’s Applications Engineering Department can recommend a suitable instrument.)
6.3 Shift Change, Power-up and Machine Setup Change Checkout

Daily checkout and checkouts after tooling and machine changes must be performed by a Designated Person appointed and identified in writing by the employer. During continuous machine run periods, this checkout must be performed at regular intervals. A copy of checkout results should be kept on or near the machine: see OSHA 1910.217(e)(1).

✔ The Designated Person must:

1) ☐ Verify that access to the dangerous parts of the guarded machine is not possible from any direction not protected by the MINI-SCREEN System or supplemental guarding.

Verify that supplemental and/or hard guarding is in place and operating properly.

2) ☐ Verify that the minimum distance from the closest hazard point of the guarded machine to the light screen is not less than the distance calculated in Section 3.2.1.

Calculated Distance
To be entered by a Qualified Person (as defined by ANSI B30.2-1983) at the time of installation or semi-annual checkout.

3) ☐ Verify that it is not possible for a person to stand inside the guarded (dangerous) area, undetected by the MINI-SCREEN System or other supplemental guarding.

Verify that hard guarding is in place and working properly to prevent access to the hazard in any area being ignored by fixed blanking.

4) ☐ Verify that the MINI-SCREEN control box cover is latched and locked. The key (or combination or tool) to the lock should be in the possession of a Qualified Person.

5) ☐ Test the effectiveness of the MINI-SCREEN system with power ON, using the chart below to select the proper test piece for your system configuration:

<table>
<thead>
<tr>
<th>Floating Blanking Program</th>
<th>Specified Test Piece</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Models</td>
</tr>
<tr>
<td>OFF</td>
<td>STP-2, 19.1 mm (0.75")</td>
</tr>
<tr>
<td>CN</td>
<td>STP-3, 44.5 mm (1.75")</td>
</tr>
</tbody>
</table>

5a) Verify that the MINI-SCREEN System is in RUN mode:

- Green and yellow LEDs – ON
 (Green will flash if blanking is ON)

If the Auto Power-up feature is OFF when dc power is applied to the System, it is normal for it to power up into a Lockout condition. If this occurs, perform a Key Reset. (See Section 5.1 for Reset procedure).

5b) Trip Test. With the guarded machine at rest, pass the selected test piece downward through the light screen at three points, perpendicular to the light screen:
- near the receiver,
- near the emitter, and
- midway between them (see Figure, right).

Verify when test piece is in the light screen:
- Red LED – ON

Verify when test piece is removed from the light screen:
- Green LED – ON (flashing if blanking is ON)

Latch models: perform a Latch Reset after each pass of the test piece.

If the green indicator comes ON at any time when the test piece is in the light screen, check for reflective surfaces and unguarded areas created by use of fixed blanking (see Warnings, page 20). Do not continue until the cause is discovered and the situation is resolved. (See Sections 3.2.2 and 3.2.4). Latch models: perform a Latch Reset after each pass of the test piece.

5c) With the guarded machine moving, insert the test piece into the light screen (perpendicular to it). Do not attempt to insert the test piece into the dangerous parts of the machine.

Verify when test piece enters light screen:
- Machine dangerous motion stops without apparent delay.

Verify when test piece is removed from light screen (and latch reset is performed, if applicable):
- Machine does not automatically restart (initiation devices must be engaged to restart the machine).

5d) With the guarded machine at rest, insert the test piece into the light screen. Verify when the test piece is in the light screen:
- The guarded machine cannot move.

6) ☐ Check carefully for external signs of damage to the MINI-SCREEN System, the guarded machine, and their electrical wiring. Any damage found should be reported immediately to management.

WARNING . . . Do Not Use Machine If the System Does Not Check Out

If all of the described checks cannot be verified, DO NOT USE the MINI-SCREEN System-guarded machine until the defect or problem has been corrected (see Section 5). Doing so could result in serious injury or death.
6.4 Semi-Annual Checkout (To Be Performed at Six-Month Intervals)

This semi-annual checkout must be done by a Qualified Person. A copy of the test results should be kept on or near the machine.

The Qualified Person must:

1) Perform the Commissioning Checkout Procedure (Section 6.2). If any decrease in machine braking ability has occurred, make the necessary clutch/brake repairs, readjust D_s appropriately, and re-perform the checkout sequence of Section 6.2. If D_s is altered, record the new distance in the appropriate place on the daily checkout card.

2) Examine and test the machine primary control elements (MPCEs) to verify that they are functioning correctly and are not in need of maintenance or replacement.

3) Inspect the guarded machine. Verify that there are no mechanical or structural problems that would prevent the machine from stopping or assuming an otherwise safe condition when signalled to do so by the MINI-SCREEN System.

4) Inspect the machine controls and connections to the MINI-SCREEN System. Verify that no modifications have been made which adversely affect the system.

WARNING . . . Reflective Surfaces

It may be possible for a highly reflective surface (a shiny machine surface or a shiny workpiece) to reflect sensing light around an object in the defined area, preventing that object from being detected. This potentially dangerous condition is discovered using the trip test as described in the Initial Checkout Procedure (Section 3.5.11), the Alignment Procedure (Section 6.1), and the Periodic Checkout Procedures (Sections 6.2, 6.3, and 6.4).

When this condition is discovered, eliminate the problem reflection(s).

- If possible, relocate the sensors to move the defined area away from the reflective surface(s), being careful to retain at least the required separation distance (Section 3.2.1).

- Otherwise, paint, mask, or roughen the interfering shiny surface to reduce its reflectivity.

- Repeat the trip test to verify that these changes have eliminated the problem reflection(s). See Section 3.2.4.

NOTE: If the workpiece is especially reflective and comes close to the defined area, perform the trip test with the shiny workpiece in place.
Glossary

Glossary of Terms

Terms shown in italics in the definitions below are themselves defined elsewhere in the glossary.

ANSI (American National Standards Institute): the American National Standards Institute, is an association of industry representatives which develops technical standards which include safety standards. These standards comprise a consensus from a variety of industries on good practice and design. ANSI standards relevant to application of the MINI-SCREEN System include ANSI B11.1 (mechanical power presses), ANSI B11.2 (hydraulic power presses), and ANSI/RIA R15.06 (industrial robots and robot systems). See page 64.

Auxiliary monitor contact: a low load capacity, non safety-related relay contact within the MINI-SCREEN System that follows the action of the associated light screen, and whose primary purpose is to communicate system status to a PLC. The MINI-SCREEN System has two auxiliary monitor contacts: one for each light screen. An auxiliary contact opens for a trip condition resulting from an interruption of the associated light screen. Both auxiliary contacts open for a lockout condition.

Auto Power-up: a feature of the MINI-SCREEN control box which, when switched ON, enables the MINI-SCREEN to be powered up (and recover from a power interruption) without the necessity of a key reset. When Auto Power-up is ON, the MINI-SCREEN control box automatically begins internal diagnostics upon power-up, and automatically resets the system if it passes the diagnostic check. With Auto Power-up OFF, a manual reset is required.

Control reliability: A method of ensuring the integrity of performance of a control system. Control circuits are designed and constructed so that a single failure or fault within the system does not prevent the normal stopping action from being applied to the machine when required, or does not create unintended machine action, but does prevent initiation of successive machine action until the failure is corrected.

Control module: contains the circuitry (internal to the MINI-SCREEN System) that provides the proper voltages to the system, controls the sensing units, receives and processes information from the sensing units and the safety monitoring means, and provides outputs to the Final Switching Devices (FSD1 and FSD2), the Secondary Switching Device (SSD), and the Auxiliary Monitor Relays.

Controller board: a removable printed circuit board, located within the MINI-SCREEN System control module, which contains the microprocessors and related electronic circuits.

Defined area: the “light screen” generated by the sensors of the MINI-SCREEN System. When the defined area is interrupted by an opaque object of a specified cross section, a trip condition results (see Figure 1).
Glossary

Designated person: a person or persons identified and designated in writing, by the employer, as being appropriately trained and qualified to perform a specified checkout procedure.

Diverse redundancy: in diverse redundancy, the redundant components are of different design, and any microprocessor programs used must run from different instruction sets written by different programmers.

Emitter: the light-emitting components of the MINI-SCREEN System, consisting of a row of synchronized modulated infrared LEDs. The emitter, together with the receiver (placed opposite), creates a “light screen” called the **defined area**. The MINI-SCREEN System uses two emitter/receiver pairs.

Final switching device (FSD): the two output relays (FSD1 and FSD2) of the MINI-SCREEN System which respond to an interruption of either defined area by interrupting the circuit connecting them to the **Machine Primary Control Elements (MPCEs)** of the guarded machine.

Floating blanking: a feature that allows the MINI-SCREEN System to be programmed to produce intentionally disabled light beams within the light screen, which appear to move up and down (“float”) in order to allow the feeding of an object through the light screen (the **defined area**) at any point along its length without causing a **trip or latch condition**.

FMEA (Failure Mode and Effects Analysis): a testing procedure by which potential failure modes in a system are analyzed to determine their results or effects on the system. Component failure modes that produce either no effect or a **lockout condition** are permitted; failures which cause an unsafe condition (a **failure to danger**) are not. Banner MINI-SCREEN Systems are extensively FMEA tested.

Forced-guided contacts: relay contacts that are mechanically linked together, so that when the relay coil is energized or de-energized, all of the linked contacts move together. If one set of contacts in the relay becomes immobilized, no other contact of the same relay will be able to move. The function of forced-guided contacts is to enable the safety circuit to check the status of the relay. Forced-guided contacts are also known as “positive-guided contacts,” “captive contacts,” “locked contacts,” or “safety relays.” MINI-SCREEN Systems use output relays with forced-guided contacts.
Glossary

Full-revolution devices: a method of machine drive arranged such that, once started, the machine can only be stopped when the full cycle is complete. Examples include positive key clutches and similar mechanisms. Banner MINI-SCREEN Systems may not be used with full-revolution devices.

Guarded machine: the machine whose point of operation is guarded by a MINI-SCREEN System, and whose MPCEs and MSCE are connected to relays FSD1, FSD2, and SSD of the MINI-SCREEN System.

Hard guarding: screens, bars, or other mechanical barriers that prevent a person from reaching over, under, or around the defined areas of an installed MINI-SCREEN System and into the point of operation of the guarded machine.

Internal lockout: a lockout condition that is due to an internal MINI-SCREEN System problem. Indicated by the red status indicator LED (only) flashing. Requires the attention of a Qualified Person.

Key reset: a key-operated switch that is used to restore the Final Switching Devices (FSDs) and Secondary Switching Device (SSD) to the ON state from a lockout or a latched condition. Also refers to the act of using the switch to reset the MINI-SCREEN System.

Latch condition: The response of the Final Switching devices (FSD) relays when an object equal to or greater than the diameter of the specified test piece enters the defined area. In a latch condition, FSD1 and FSD2 simultaneously de-energize and open their contacts. The latch must be reset after the defined area is cleared by performing a key reset. (See Trip condition.)

Lockout condition: a condition of the MINI-SCREEN System that is automatically attained both: (1) when its ac supply mains are interrupted and restored,* and (2) in response to certain failure signals. When a lockout condition occurs, the MINI-SCREEN System's FSD, SSD, and Auxiliary Monitor Relay contacts open, and a key reset is required to return the system to the RUN condition.

* Except when the system is programmed for auto power-up.

Machine primary control element (MPCE): an electrically powered element, external to the MINI-SCREEN System, which directly controls the machine's normal operating motion in such a way that it is last (in time) to operate when motion is either initiated or arrested.

Machine response time: the time between the interruption by the Final Switching Devices (FSDs) of the electrical supply to the Machine Primary Control Element(s) (MPCEs) and the instant when the dangerous parts of the machine reach a safe state by being brought to rest.

Machine secondary control element (MSCE): a machine control element independent of the Machine Primary Control Element(s) (MPCEs), capable of removing the source of power from the prime mover of the relevant dangerous machine parts.
Minimum object sensitivity: the minimum-diameter object that a light screen system can reliably detect. Objects of this diameter or greater will be detected anywhere in the sensing field. A smaller object can pass undetected through the light screen if it passes exactly midway between two adjacent light beams. See also specified test piece.

MPCE monitor contacts: the normally open and normally closed contacts of a guarded machine’s MPCEs which are connected in series with the power supply to the MINI-SCREEN System. Any inconsistency of action between the two sets of monitor contacts will remove power from the MINI-SCREEN System and cause a lockout condition. See Figure 23.

Muting: The automatic suspension of the safeguarding function of a safety device during a non-hazardous portion of the machine cycle.

OFF state (of Final and Secondary Switching Devices): in the OFF state, the output circuit is broken (open) and interrupts the flow of current.

ON state (of Final and Secondary Switching Devices): in the ON state, the output circuit is complete (closed) and permits the flow of current.

OSHA (Occupational Safety and Health Administration); OSHA CFR 1910.217: Occupational Safety and Health Administration (a US Federal agency), Division of the US Department of Labor, that is responsible for the regulation of workplace safety. OSHA regulations often follow ANSI standards, including mechanical power press requirements (OSHA CFR 1910.217). These regulations become law when adopted by OSHA, and must be followed. See page 61.

Output relays: the devices (within the MINI-SCREEN System) that are used to initiate a stop signal. The MINI-SCREEN System’s output relays (FSD1, FSD2, and SSD) use forced-guided contacts.

Point of operation: the area of the guarded machine where a workpiece is positioned and a machine function (i.e. shearing, forming, punching, assembling, welding, etc.) is performed upon it.

Power supply board: a removable printed circuit board which contains the power supply circuit and output relays and is located inside the MINI-SCREEN System control module. A green LED on the power supply board lights whenever power is present on the board.

Power-up/power interrupt lockout: a lockout condition of the MINI-SCREEN System that, if Auto Power-up is OFF, occurs when the system is powered up (including upon power-up after a loss of power). Indicated by the yellow Status Indicator LED (only) double-flashing. Requires a key reset by a designated person.
Glossary

PSDI (Presence Sensing Device Initiation): an application in which a presence sensing device is used to actually start the cycle of a machine. In a typical situation, an operator manually positions a part in the machine for the operation. When the operator moves out of the danger area, the presence-sensing device starts the machine (i.e., no start switch is used). The machine cycle runs to completion, and the operator can then insert a new part and start another cycle. The presence-sensing device continually guards the machine. Single break mode is used when the part is automatically ejected after the machine operation. Double break mode is used when the part is both inserted (to begin the operation) and removed (after the operation) by the operator. PSDI is defined in OSHA CFR 1910.217. **Banner MINI-SCREEN Systems may not be used as PSDI devices on mechanical power presses, per OSHA regulation 29 CFR 1910.217.**

Qualified Person: a person or persons who, by possession of a recognized degree or certificate of professional training, or who, by extensive knowledge, training, and experience, has successfully demonstrated the ability to solve problems relating to the subject matter and work (ANSI B30.2-1983).

Receiver: the light-receiving components of the MINI-SCREEN System, consisting of a row of synchronized phototransistors. The receiver, together with the emitter (placed opposite), creates a “light screen” called the **defined area.**

Secondary switching device (SSD): the output relay of the MINI-SCREEN System which, in a lockout condition, interrupts the circuit connecting it to the **Machine Secondary Control Element (MSCE).**

Self-checking (circuitry): a circuit with the capability to electronically verify that all of its own critical circuit components, along with their redundant backups, are operating properly. **Banner MINI-SCREEN Systems are self-checking.**

Separation distance: that distance, along the direction of approach, between the outermost position at which the appropriate test piece will just be detected and the nearest dangerous machine parts.

Single-stroke press: see **full-revolution devices.**

Specified test piece: an opaque object of the minimum cross section required to place the MINI-SCREEN System into a **trip or latch condition** when inserted into any part of the **defined area.** See also **Test piece, minimum object sensitivity** and Section 3.2.1.

Supplemental guarding: additional electrosensitive safety device(s), possibly employed along with hard guarding measures, used for the purpose of preventing a person from reaching over, under, or around the **defined areas** of an installed MINI-SCREEN System and into the **point of operation** of the guarded machine.

Test piece: an opaque object of the minimum cross section required to place the MINI-SCREEN System into a **trip or latch condition** when inserted into any part of the **defined area.** See also **Specified test piece, minimum object sensitivity** and Section 3.2.1.
Trip condition: the response of the Final Switching Device (FSD) relays when an object equal to or greater than the diameter of the specified test piece enters the defined area. In a trip condition, FSD1 and FSD2 simultaneously de-energize and open their contacts. A trip condition clears automatically when the object is removed from the defined area. (See *Latch condition*.)

UL (Underwriters Laboratory): a third-party organization which tests a manufacturer’s products for compliance with appropriate Standards, electrical and/or safety codes. Compliance is indicated by their listing mark on the product.
Specifications - Emitters and Receivers

<table>
<thead>
<tr>
<th>9 m (30') Range Models</th>
<th>18 m (60') Range Models</th>
<th>Defined Area</th>
<th>Number of Beams</th>
<th>9 m (30') Range Models</th>
<th>18 m (60') Range Models</th>
<th>Defined Area</th>
<th>Number of Beams</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE2424(Y) emitter</td>
<td>MSXLE2424(Y) emitter</td>
<td>610 mm (24°)</td>
<td>48</td>
<td>MSE4824(Y) emitter</td>
<td>MSXLR4824(Y) emitter</td>
<td>1219 mm (48°)</td>
<td>96</td>
</tr>
<tr>
<td>MSR2424(Y) receiver</td>
<td>MSXLR2424(Y) receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSE1224(Y) emitter</td>
<td>MSXLE1224(Y) emitter</td>
<td>305 mm (12°)</td>
<td>24</td>
<td>MSE3624(Y) emitter</td>
<td>MSXLR3624(Y) emitter</td>
<td>914 mm (36°)</td>
<td>72</td>
</tr>
<tr>
<td>MSR1224(Y) receiver</td>
<td>MSXLR1224(Y) receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSE624(Y) emitter</td>
<td>MSXLE624(Y) emitter</td>
<td>406 mm (16°)</td>
<td>32</td>
<td>MSE4024(Y) emitter</td>
<td>MSXLR4024(Y) emitter</td>
<td>1016 mm (40°)</td>
<td>80</td>
</tr>
<tr>
<td>MSR624(Y) receiver</td>
<td>MSXLR624(Y) receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSE1624(Y) emitter</td>
<td>MSXLE1624(Y) emitter</td>
<td>508 mm (20°)</td>
<td>40</td>
<td>MSE4424(Y) emitter</td>
<td>MSXLR4424(Y) emitter</td>
<td>1118 mm (44°)</td>
<td>88</td>
</tr>
<tr>
<td>MSR1624(Y) receiver</td>
<td>MSXLR1624(Y) receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSE2024(Y) emitter</td>
<td>MSXLE2024(Y) emitter</td>
<td>610 mm (24°)</td>
<td>48</td>
<td>MSE4824(Y) emitter</td>
<td>MSXLR4824(Y) emitter</td>
<td>1219 mm (48°)</td>
<td>96</td>
</tr>
<tr>
<td>MSR2024(Y) receiver</td>
<td>MSXLR2024(Y) receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSE824(Y) emitter</td>
<td>MSXLE824(Y) emitter</td>
<td>215 mm (8.5')</td>
<td>16</td>
<td>MSE3224(Y) emitter</td>
<td>MSXLR3224(Y) receiver</td>
<td>813 mm (32')</td>
<td>64</td>
</tr>
<tr>
<td>MSR824(Y) receiver</td>
<td>MSXLR824(Y) receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSE424(Y) emitter</td>
<td>MSXLE424(Y) emitter</td>
<td>114 mm (4.5')</td>
<td>8</td>
<td>MSE2824(Y) emitter</td>
<td>MSXLR2824(Y) receiver</td>
<td>711 mm (28')</td>
<td>56</td>
</tr>
<tr>
<td>MSR424(Y) receiver</td>
<td>MSXLR424(Y) receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Emitter/receiver separation
- 15 cm to 9 m (6” to 30’) for short-range sensors
- 15 cm to 18 m (6” to 60’) for long-range sensors

Minimum object sensitivity
- 19.1 mm (0.75”) for 9 m (30’) range sensors with floating blanking OFF
- 25.4 mm (1.00”) for 18 m (60’) range sensors with floating blanking OFF

Response time
- Less than 48 milliseconds using emitter/receiver with 4.5” to 16” defined area
- Less than 60 milliseconds using emitter/receiver with 20” to 32” defined area
- Less than 72 milliseconds using emitter/receiver with 36” to 48” defined area

Self-checking interval
- 20 milliseconds

Ambient light immunity
- >10,000 lux at 5° angle of incidence

Strobe light immunity
- Totally immune to one Federal Signal Corp. “Fireball” model FB2PST strobe.

Emitter elements
- Infrared LEDs; 880nm peak emission

Status indicators
- **Emitter:** Green LED for power ON indication
- **Receiver:** Red, yellow, and green status indicators with same functions as those on control module (see Control Module Specifications). Yellow LED also indicates alignment. Indicators are visible on three sides of receiver base.

Enclosures
- **Size:** see Figure 15, page 23
- **Material:** Aluminum, with black anodized or yellow polyester painted finish; acrylic lens cover
- **Rating:** NEMA 4, 13 (IP 65)

Mounting hardware
- Emitter and receiver are each supplied with a pair of mounting brackets. Mounting brackets are 11-gauge cold-rolled black zinc chromate finished steel. A set of four vibration-dampening mounts is also supplied.

Operating conditions
- **Temperature:** 0° to +50°C (+32° to 122°F)
- **Max. Relative Humidity:** 95% (non-condensing)
Specifications - Control Module

Models
- **MSDINT-1**: Trip output
- **MSDINT-1L2**: Latch output

Control Box
- 24V dc ±15%, 10% maximum ripple, 1.5 amps max.

Status indicators (on control module and receiver)

<table>
<thead>
<tr>
<th></th>
<th>Solid</th>
<th>Flashing</th>
<th>Double-Flashing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Blocked/Latched</td>
<td>Lockout</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Clear</td>
<td>Blanking ON</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Reset, aligned, defined area clear</td>
<td>Alignment: flash rate increases with the number of sensing beams “made.”</td>
<td>Waiting for power-up manual key reset</td>
</tr>
</tbody>
</table>

Emitter: green LED indicates power ON.

Diagnostic indicator
- Single-digit alphanumeric display indicates cause of lockout condition.

Controls and adjustments
- Keyed Reset of system lockout conditions (Latch Reset of latch conditions)
- Blanking selection switches
- Auto Power Up ON/OFF switches

Test input/Latch reset input
- Terminals must be closed for a minimum of 0.05 seconds in order to guarantee a test input signal or 0.25 seconds for a latch reset signal. The switching device used must be capable of switching 15-50V dc at 20 to 100 mA.

Auxiliary monitor relay/alarm relays
- Reed relay; 125V ac or dc max., 500 mA max. (10VA maximum, resistive load)

Output configuration (FSD1, FSD2, and SSD)
- Forced-guided contact relays, 250V ac max., 4 amps max. (resistive load).
- Mechanical life 10,000,000 operations (minimum).
- Electrical life (at full rated load) 100,000 operations (typical).
- Arc suppression is recommended when switching inductive loads. See Figure 23, page 33.

Enclosure
- **Size**: see dimension drawing on page 24
- **Material**: Polycarbonate
- **Rating**: NEMA 1, (IP 20)

Fuse rating
- 2 amp, 250V (3AG or 5x20mm slow blow)

Operating conditions
- **Temperature**: 0° to +50°C (+32° to 122°F)
- **Max. Relative Humidity**: 95% (non-condensing)

FMEA tested (Failure Mode and Effects Analysis)
- Per requirements of IEC 61496-1 (type 4).

Cables
- NOTE: Use only Banner cables, which incorporate a “twisted pair” for noise immunity on RS485 data communication lines. Use of other cables can result in “nuisance” lockouts. Emitter and receiver cables are ordered separately. Banner 5-conductor shielded cables have a straight QD (quick-disconnect) connector molded onto the sensor end. Cables measure 8.1 mm (0.32") in diameter, and are shielded and PVC-jacketed. Conductors are 20-gauge. Emitter and receiver cables may not exceed 53 m (175') total for each emitter and receiver pair; see Cables, page 58.

MSDINT-1 Certifications
- UL 1998 System Certified

MSDINT-1L2 Certifications
- UL 1998 System Certified
Ordering Information

MINI-SCREEN Systems consist of one control module, one emitter, one receiver two cables. All components are ordered separately. The only requirement is that
the emitter and receiver must be of equal length. Cables are interchangeable
between emitters and receivers. See page 59 for system accessories.

MINI-SCREEN Emitters (E) and Receivers (R)

<table>
<thead>
<tr>
<th>Defined Area</th>
<th>Models</th>
<th>Black Anodized</th>
<th>Yellow Painted</th>
</tr>
</thead>
<tbody>
<tr>
<td>114 mm (4.5")</td>
<td>MSE424</td>
<td>MSXE424</td>
<td>MSXE424Y</td>
</tr>
<tr>
<td></td>
<td>MSR424</td>
<td>MSXR424</td>
<td>MSXR424Y</td>
</tr>
<tr>
<td>215 mm (8.5")</td>
<td>MSE824</td>
<td>MSXE824</td>
<td>MSXE824Y</td>
</tr>
<tr>
<td></td>
<td>MSR824</td>
<td>MSXR824</td>
<td>MSXR824Y</td>
</tr>
<tr>
<td>305 mm (12")</td>
<td>MSE1224</td>
<td>MSXE1224</td>
<td>MSXE1224Y</td>
</tr>
<tr>
<td></td>
<td>MSR1224</td>
<td>MSXR1224</td>
<td>MSXR1224Y</td>
</tr>
<tr>
<td>406 mm (16")</td>
<td>MSE1624</td>
<td>MSXE1624</td>
<td>MSXE1624Y</td>
</tr>
<tr>
<td></td>
<td>MSR1624</td>
<td>MSXR1624</td>
<td>MSXR1624Y</td>
</tr>
<tr>
<td>508 mm (20")</td>
<td>MSE2024</td>
<td>MSXE2024</td>
<td>MSXE2024Y</td>
</tr>
<tr>
<td></td>
<td>MSR2024</td>
<td>MSXR2024</td>
<td>MSXR2024Y</td>
</tr>
<tr>
<td>610 mm (24")</td>
<td>MSE2424</td>
<td>MSXE2424</td>
<td>MSXE2424Y</td>
</tr>
<tr>
<td></td>
<td>MSR2424</td>
<td>MSXR2424</td>
<td>MSXR2424Y</td>
</tr>
<tr>
<td>711 mm (28")</td>
<td>MSE2824</td>
<td>MSXE2824</td>
<td>MSXE2824Y</td>
</tr>
<tr>
<td></td>
<td>MSR2824</td>
<td>MSXR2824</td>
<td>MSXR2824Y</td>
</tr>
<tr>
<td>813 mm (32")</td>
<td>MSE3224</td>
<td>MSXE3224</td>
<td>MSXE3224Y</td>
</tr>
<tr>
<td></td>
<td>MSR3224</td>
<td>MSXR3224</td>
<td>MSXR3224Y</td>
</tr>
<tr>
<td>914 mm (36")</td>
<td>MSE3624</td>
<td>MSXE3624</td>
<td>MSXE3624Y</td>
</tr>
<tr>
<td></td>
<td>MSR3624</td>
<td>MSXR3624</td>
<td>MSXR3624Y</td>
</tr>
<tr>
<td>1016 mm (40")</td>
<td>MSE4024</td>
<td>MSXE4024</td>
<td>MSXE4024Y</td>
</tr>
<tr>
<td></td>
<td>MSR4024</td>
<td>MSXR4024</td>
<td>MSXR4024Y</td>
</tr>
<tr>
<td>1118 mm (44")</td>
<td>MSE4424</td>
<td>MSXE4424</td>
<td>MSXE4424Y</td>
</tr>
<tr>
<td></td>
<td>MSR4424</td>
<td>MSXR4424</td>
<td>MSXR4424Y</td>
</tr>
<tr>
<td>1219 mm (48")</td>
<td>MSE4824</td>
<td>MSXE4824</td>
<td>MSXE4824Y</td>
</tr>
</tbody>
</table>

Pigtail Quick-Disconnect Option

Any emitter or receiver may be ordered with a 305 mm (12") cable pigtail
terminated in the 5-pin male Mini-style quick-disconnect connector. This option
accommodates requirements for right-angle exit of the cable from the base of the
emitter and receiver and uses the same mating quick-disconnect cables, as listed
above (ordered separately). To specify a pigtail quick-disconnect cable, add suffix
"P" to the model number of the emitter or receiver, for example: MSE1624YP.

Controllers (One per system)

<table>
<thead>
<tr>
<th>Models</th>
<th>Black Anodized</th>
<th>Yellow Painted</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSDINT-1</td>
<td>24V dc control module, Trip Output</td>
<td></td>
</tr>
<tr>
<td>MSDINT-1L2</td>
<td>24V dc control module, Latch Output</td>
<td></td>
</tr>
</tbody>
</table>

Cables (Two required per system)*

<table>
<thead>
<tr>
<th>Models</th>
<th>Black Anodized</th>
<th>Yellow Painted</th>
</tr>
</thead>
<tbody>
<tr>
<td>QDC-515C</td>
<td>4.5 m (15') cable, straight QD connector</td>
<td></td>
</tr>
<tr>
<td>QDC-525C</td>
<td>7.6 m (25') cable, straight QD connector</td>
<td></td>
</tr>
<tr>
<td>QDC-550C</td>
<td>15 m (50') cable, straight QD connector</td>
<td></td>
</tr>
<tr>
<td>QDC-5100</td>
<td>30 m (100') cable, straight QD connector</td>
<td></td>
</tr>
<tr>
<td>QDC-5150</td>
<td>45 m (150') cable, straight QD connector</td>
<td></td>
</tr>
</tbody>
</table>

*NOTE: Total cable length per emitter and receiver pair must be less than 53 m (175').

Panel-Mount Cables

Panel-mount cables are also available to provide quick-disconnect connection
between emitter/receiver and the control module, without opening the electrical
panel. See Accessories, page 59.
MINI-SCREEN Emitter and Receiver Cables

<table>
<thead>
<tr>
<th>Model</th>
<th>Cable Type</th>
<th>Length*</th>
<th>Wire</th>
<th>Termination</th>
<th>Dimensions</th>
<th>Pinout</th>
</tr>
</thead>
<tbody>
<tr>
<td>QDC-515C</td>
<td>Cut-to-length</td>
<td>5 m (15')</td>
<td>20 ga</td>
<td>5-pin Mini-style Female connector on one end</td>
<td>58 mm (2.3')</td>
<td></td>
</tr>
<tr>
<td>QDC-525C</td>
<td>Cut-to-length</td>
<td>8 m (25')</td>
<td></td>
<td></td>
<td></td>
<td>Male Connector (Pins)</td>
</tr>
<tr>
<td>QDC-550C</td>
<td>Cut-to-length</td>
<td>15 m (50')</td>
<td></td>
<td></td>
<td></td>
<td>Black Blue White Brown Drain</td>
</tr>
<tr>
<td>QDC-5100</td>
<td>Cut-to-length</td>
<td>30 m (100')</td>
<td>16 ga</td>
<td>5-pin Mini-style Female connector on one end</td>
<td>58 mm (2.3')</td>
<td></td>
</tr>
<tr>
<td>QDC-5150</td>
<td>Cut-to-length</td>
<td>45 m (150')</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC-515C</td>
<td>Extension</td>
<td>5 m (15')</td>
<td>20 ga</td>
<td>5-pin Mini-style Female connector on one end</td>
<td>58 mm (2.3')</td>
<td></td>
</tr>
<tr>
<td>DEC-525C</td>
<td>Extension</td>
<td>8 m (25')</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC-550C</td>
<td>Extension</td>
<td>15 m (50')</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC-570</td>
<td>Extension</td>
<td>21 m (70')</td>
<td>16 ga</td>
<td>5-pin Mini-style Female connector on both ends</td>
<td>58 mm (2.3')</td>
<td></td>
</tr>
<tr>
<td>DEC-5100</td>
<td>Extension</td>
<td>30 m (100')</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC-5125</td>
<td>Extension</td>
<td>36 m (122')</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC2-515C</td>
<td>Extension</td>
<td>5 m (15')</td>
<td>20 ga</td>
<td>5-pin Mini-style Female connector on one end and Male connector on other end</td>
<td>58 mm (2.3')</td>
<td></td>
</tr>
<tr>
<td>DEC2-525C</td>
<td>Extension</td>
<td>8 m (25')</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC2-550C</td>
<td>Extension</td>
<td>15 m (50')</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC2-575</td>
<td>Extension</td>
<td>23 m (75')</td>
<td>16 ga</td>
<td>5-pin Mini-style Female connector on both ends</td>
<td>58 mm (2.3')</td>
<td></td>
</tr>
<tr>
<td>DEC2-5100</td>
<td>Extension</td>
<td>30 m (100')</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*NOTE: Total cable length per emitter and receiver pair must be less than 53 m (175').
<table>
<thead>
<tr>
<th>Model</th>
<th>Cable Type</th>
<th>Length*</th>
<th>Wire</th>
<th>Termination</th>
<th>Dimensions</th>
<th>Pinout</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMC-510C</td>
<td>Out-to-length</td>
<td>3.3 m (10')</td>
<td>20 ga</td>
<td>5-pin Mini-style Panel-mount Male connector on one end</td>
<td>16.5 mm (0.65")</td>
<td>Female Connector (sockets)</td>
</tr>
<tr>
<td>PMC-510</td>
<td>Out-to-length</td>
<td>3.3 m (10')</td>
<td>16 ga</td>
<td>5-pin Mini-style Panel-mount Male connector on one end</td>
<td>16.5 mm (0.65")</td>
<td>Male Connector (Pins)</td>
</tr>
<tr>
<td>PMCF-510C</td>
<td>Out-to-length</td>
<td>3.3 m (10')</td>
<td>20 ga</td>
<td>5-pin Mini-style Panel-mount Female connector on one end</td>
<td>16.5 mm (0.65")</td>
<td></td>
</tr>
<tr>
<td>PMC-510CLP</td>
<td>Out-to-length</td>
<td>3.3 m (10')</td>
<td>20 ga</td>
<td>5-pin Mini-style Panel-mount Male connector on one end. Low Profile</td>
<td>16.8 mm (0.74")</td>
<td></td>
</tr>
</tbody>
</table>

*NOTE: Total cable length per emitter and receiver pair must be less than 53 m (175').
Documentation

The following documentation is supplied with each MINI-SCREEN System Control Module. Additional copies are available at no charge.

Checkout Procedure Card (Daily): order p/n 47783
Checkout Procedure Card (Semi-annual): order p/n 47784

Replacement Parts, MINI-SCREEN Systems

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>40091</td>
<td>BA2MB</td>
<td>Mounting Hardware Kit for one emitter or receiver</td>
</tr>
<tr>
<td>28513</td>
<td>MGA-K-1</td>
<td>Replacement key</td>
</tr>
<tr>
<td>30140</td>
<td>MGA-KSO-1</td>
<td>Key switch, only (no wires)</td>
</tr>
<tr>
<td>45280</td>
<td>MSDA-RM-1</td>
<td>Replacement power supply/relay board</td>
</tr>
<tr>
<td>45281</td>
<td>MSDAB-1</td>
<td>Replacement controller board — model MSDINT-1 Control Module</td>
</tr>
<tr>
<td>48450</td>
<td>MSDAL-1</td>
<td>Replacement controller board — model MSDINT-1L2 Control Module</td>
</tr>
<tr>
<td>43957</td>
<td>STP-2</td>
<td>Specified test piece (0.75” dia.)</td>
</tr>
<tr>
<td>43958</td>
<td>STP-3</td>
<td>Specified test piece (1.75” dia.)</td>
</tr>
<tr>
<td>48981</td>
<td>STP-7</td>
<td>Specified test piece (1.00” dia.)</td>
</tr>
<tr>
<td>49126</td>
<td>STP-8</td>
<td>Specified test piece (2.00” dia.)</td>
</tr>
</tbody>
</table>

MSA Series Lens Shields

Model MSSxx is a replaceable protective cover for the lens of a MINI-SCREEN emitter or receiver. The shield is made of 1.5 mm (0.06”) clear polycarbonate.

Shield models are available for every length of sensor from 4” to 48” (see chart below). The shields attach to the sensor using two adhesive-backed Neoprene foam strips.

Application Note: When shields are installed on both the emitter and receiver, excess gain is reduced by 36 percent (and maximum operating range is reduced by 20 percent).

<table>
<thead>
<tr>
<th>Protective Shield</th>
<th>Model Number</th>
<th>Assembly Number</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>4"</td>
<td>MSS4</td>
<td>44308</td>
<td>5.4"</td>
</tr>
<tr>
<td>8"</td>
<td>MSS8</td>
<td>44308</td>
<td>9.4"</td>
</tr>
<tr>
<td>12"</td>
<td>MSS12</td>
<td>44310</td>
<td>13.4"</td>
</tr>
<tr>
<td>16"</td>
<td>MSS16</td>
<td>44311</td>
<td>17.4"</td>
</tr>
<tr>
<td>20"</td>
<td>MSS20</td>
<td>44312</td>
<td>21.4"</td>
</tr>
<tr>
<td>24"</td>
<td>MSS24</td>
<td>44313</td>
<td>25.3"</td>
</tr>
<tr>
<td>28"</td>
<td>MSS28</td>
<td>44314</td>
<td>29.3"</td>
</tr>
<tr>
<td>32"</td>
<td>MSS32</td>
<td>44315</td>
<td>33.3"</td>
</tr>
<tr>
<td>36"</td>
<td>MSS36</td>
<td>44316</td>
<td>37.3"</td>
</tr>
<tr>
<td>40"</td>
<td>MSS40</td>
<td>44317</td>
<td>41.3"</td>
</tr>
<tr>
<td>44"</td>
<td>MSS44</td>
<td>44318</td>
<td>41.3"</td>
</tr>
<tr>
<td>48"</td>
<td>MSS48</td>
<td>44319</td>
<td>49.3"</td>
</tr>
</tbody>
</table>
MSM Series Corner Mirrors

<table>
<thead>
<tr>
<th>Mirror Model</th>
<th>Part Number</th>
<th>Reflective Area Y</th>
<th>Mounting L1</th>
<th>Height L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSM4A</td>
<td>43162</td>
<td>16.5 cm (6.5")</td>
<td>22.1 cm (8.7")</td>
<td>19.1 cm (7.5")</td>
</tr>
<tr>
<td>MSM8A</td>
<td>43163</td>
<td>26.7 cm (10.5")</td>
<td>32.3 cm (12.7")</td>
<td>29.2 cm (11.5")</td>
</tr>
<tr>
<td>MSM12A</td>
<td>43164</td>
<td>35.6 cm (14")</td>
<td>41.1 cm (16.2")</td>
<td>38.1 cm (15")</td>
</tr>
<tr>
<td>MSM16A</td>
<td>43165</td>
<td>45.7 cm (18")</td>
<td>51.3 cm (20.2")</td>
<td>48.3 cm (19")</td>
</tr>
<tr>
<td>MSM20A</td>
<td>43166</td>
<td>55.9 cm (22")</td>
<td>61.5 cm (24.2")</td>
<td>58.4 cm (23")</td>
</tr>
<tr>
<td>MSM24A</td>
<td>43167</td>
<td>66.0 cm (26")</td>
<td>71.6 cm (28.2")</td>
<td>68.6 cm (27")</td>
</tr>
<tr>
<td>MSM28A</td>
<td>43168</td>
<td>76.2 cm (30")</td>
<td>81.8 cm (32.2")</td>
<td>78.7 cm (31")</td>
</tr>
<tr>
<td>MSM32A</td>
<td>43169</td>
<td>86.4 cm (34")</td>
<td>91.9 cm (36.2")</td>
<td>88.9 cm (35")</td>
</tr>
<tr>
<td>MSM36A</td>
<td>43170</td>
<td>96.5 cm (38")</td>
<td>102.1 cm (40.2")</td>
<td>99.1 cm (39")</td>
</tr>
<tr>
<td>MSM40A</td>
<td>43171</td>
<td>106.7 cm (42")</td>
<td>112.3 cm (44.2")</td>
<td>109.2 cm (43")</td>
</tr>
<tr>
<td>MSM44A</td>
<td>43172</td>
<td>116.8 cm (46")</td>
<td>122.4 cm (48.2")</td>
<td>119.4 cm (47")</td>
</tr>
<tr>
<td>MSM48A</td>
<td>43173</td>
<td>127.0 cm (50")</td>
<td>132.6 cm (52.2")</td>
<td>129.5 cm (51")</td>
</tr>
</tbody>
</table>

MSA Series Stands

<table>
<thead>
<tr>
<th>Model of Stand</th>
<th>Part Number</th>
<th>Stand Height</th>
<th>Mirror Length (Brackets Outward)</th>
<th>Mirror Length (Brackets Inward)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSA-S24-1</td>
<td>43174</td>
<td>24"</td>
<td>4" to 8"</td>
<td>4" to 12"</td>
</tr>
<tr>
<td>MSA-S42-1</td>
<td>43175</td>
<td>42"</td>
<td>4" to 24"</td>
<td>4" to 28"</td>
</tr>
<tr>
<td>MSA-S66-1</td>
<td>43176</td>
<td>66"</td>
<td>4" to 48"</td>
<td>4" to 48"</td>
</tr>
</tbody>
</table>

LAT-1 Laser Alignment Tool

<table>
<thead>
<tr>
<th>Description</th>
<th>Model Number</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-contained visible-beam laser tool for alignment of any MICRO-SCREEN or MINI-SCREEN emitter/receiver pair. Includes retroreflective target material and two mounting clips.</td>
<td>LAT-1</td>
<td>52150</td>
</tr>
</tbody>
</table>
MINI-SCREEN Mounting Brackets

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
</table>
| **MSMB-1** | • 11- gage, black zinc plated, chromate dip finish
• One-inch mounting hole separation
• Mounting hardware included | |
| **MSMB-2** | • 11- gage, black zinc plated, chromate dip finish
• Low profile bracket
• Mounting hardware included | |
| **MSMB-3** (Included with each emitter and receiver) | • 11- gage, black zinc plated, chromate dip finish
• Standard 1.75” mounting hole separation
• Mounting hardware included | |
| **MSMB-4** | • 11- gage, black zinc plated, chromate dip finish
• Retrofit for STI MS43
• Mounting hardware included | |
SOURCES

ANSI B11 Documents

American National Standards Institute
11 West 42nd Street
New York, NY 10036
Telephone: (212) 642-4900
Safety Director
AMT – The Association for Manufacturing Technology
7901 Westpark Drive
McLean, VA 22102-4269
Telephone: (703) 893-2900

ANSI/RIA Documents

Obtain from ANSI (above) or:
Robotics Industries Association
900 Victors Way, P.O. Box 3724
Ann Arbor, MI 48106
Telephone: (734) 994-6088

NFPA Documents

National Fire Protection Association
1 Batterymarch Park
P.O. Box 9101
Quincy, MA 02269-9101
Telephone: (800) 344-3555

U.S. Application Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI B11.1</td>
<td>Machine Tools – Mechanical Power Presses – Safety Requirements for Construction, Care, and Use of</td>
</tr>
<tr>
<td>ANSI B11.2</td>
<td>Hydraulic Power Presses – Safety Requirements for Construction, Care, and Use of</td>
</tr>
<tr>
<td>ANSI B11.3</td>
<td>Power Press Brakes – Safety Requirements for Construction, Care, and Use of</td>
</tr>
<tr>
<td>ANSI B11.4</td>
<td>Shears – Safety Requirements for Construction, Care, and Use of</td>
</tr>
<tr>
<td>ANSI B11.5</td>
<td>Machine Tools – Iron Workers – Safety Requirements for Construction, Care, and Use of</td>
</tr>
<tr>
<td>ANSI B11.6</td>
<td>Lathes – Safety Requirements for Construction, Care, and Use of</td>
</tr>
<tr>
<td>ANSI B11.7</td>
<td>Cold Headers and Cold Formers – Safety Requirements for Construction, Care, and Use of</td>
</tr>
<tr>
<td>ANSI B11.8</td>
<td>Drilling, Milling, and Boring Machines – Safety Requirements for Construction, Care, and Use of</td>
</tr>
<tr>
<td>ANSI B11.9</td>
<td>Grinding Machines – Safety Requirements for Construction, Care, and Use of</td>
</tr>
<tr>
<td>ANSI B11.10</td>
<td>Metal Sawing Machines – Safety Requirements for Construction, Care, and Use of</td>
</tr>
<tr>
<td>ANSI B11.11</td>
<td>Gear Cutting Machines – Safety Requirements for Construction, Care, and Use of</td>
</tr>
<tr>
<td>ANSI B11.12</td>
<td>Roll Forming and Roll Bending Machines – Safety Requirements for Construction, Care, and Use of</td>
</tr>
</tbody>
</table>
Safety Standards

U.S. Design Standards

<table>
<thead>
<tr>
<th>UL 991</th>
<th>UL 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests for Safety-related Controls Employing Solid-state Devices</td>
<td>Standard for Safety Related Software</td>
</tr>
</tbody>
</table>

OSHA Regulations

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>General Requirements for (Guarding of) All Machines</td>
<td>(Guarding of) Mechanical Power Presses</td>
</tr>
</tbody>
</table>

European Standards

<table>
<thead>
<tr>
<th>EN 292-1, ISO/TR 12100-1</th>
<th>EN 999, ISO/DIS 13855</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 292-2, ISO/TR 12100-2</td>
<td>EN 1050, ISO 14121</td>
</tr>
<tr>
<td>Safety of Machinery – Basic Concepts, General Principles for Design Part 2: Technical Principals and Specifications</td>
<td>Safety of Machinery – Principles of Risk Assessment</td>
</tr>
<tr>
<td>EN 294, ISO 13852</td>
<td>EN 1088, ISO 14119</td>
</tr>
<tr>
<td>Safety of Machinery – Safety Distances to Prevent Danger Zones Being Reached by the Upper Limbs</td>
<td>Safety of Machinery – Interlocking Devices Associated with Guards – Principles for Design and Selection</td>
</tr>
<tr>
<td>EN 418, ISO 13850</td>
<td>IEC/EN 60204-1</td>
</tr>
<tr>
<td>EN 574, ISO/DIS 13851</td>
<td>IEC/EN 61496</td>
</tr>
<tr>
<td>prEN 811, ISO 13853</td>
<td>IEC 60529</td>
</tr>
<tr>
<td>Safety of Machinery – Safety Distances to Prevent Danger Zones Being Reached by the Lower Limbs</td>
<td>Degrees of Protection Provided by Enclosures</td>
</tr>
<tr>
<td>EN 954-1, ISO 13849</td>
<td>IEC/EN 60947-5-1</td>
</tr>
<tr>
<td>Safety of Machinery – Safety Related Parts of Control Systems</td>
<td>Low Voltage Switchgear – Electromechanical Control Circuit Devices</td>
</tr>
<tr>
<td>EN 999, ISO/DIS 13855</td>
<td>IEC/EN 60947-1</td>
</tr>
</tbody>
</table>

Sources

U.S. Design Standards

Underwriters Laboratories Inc.
333 Pfingsten Road
Northbrook, IL 60062-2096
Telephone: (847) 272-8800

OSHA Regulations

Part of:
Code of Federal Regulations
Title 29, Parts 1900 to 1910
Superintendent of Documents
Government Printing Office
P.O. Box 371954
Pittsburgh, PA 15250-7954
Telephone: (202) 512-1800

European Standards

- **EN and IEC Standards**
 Available from:
 Global Engineering Documents
 15 Inverness Way East
 Englewood, CO 80112-5704
 Phone: 1 (800) 854-7179
 Fax: (303) 397-2740

- **BS Documents**
 British Standards Association
 2 Park Street
 London W1A 2BS
 England
 Telephone: 011-44-908-1166
MINI-SCREEN

MSDINT-1 (Trip)/MSDINT-1L2 (Latch)
MINI-SCREEN

MSDINT-1 (Trip)/MSDINT-1L2 (Latch)
WARRANTY: Banner Engineering Corp. warrants its products to be free from defects for one year. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture found to be defective at the time it is returned to the factory during the warranty period. This warranty does not cover damage or liability for the improper application of Banner products. This warranty is in lieu of any other warranty either expressed or implied.