

ScriptBasic for the DXM Controller
Instruction Manual

Original Instructions
191745 Rev H
October 20, 2023
© Banner Engineering Corp. All rights reserved

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 2

Contents
Creating a ScriptBasic File .. 4

Uploading ScriptBasic Programs to the DXM Controller ... 5

Debugging a ScriptBasic Program .. 6

ScriptBasic Language .. 7
API Commands ... 7
Assignment ... 7
Comment Line ... 7
DO UNTIL Statement .. 7
DO WHILE Statement ... 8
END Statement ... 8
File Operations ... 8

FILEOUT function to Write Output ... 8
FILEIN to Read Data .. 9
Ethernet Data Packets with ScriptBasic .. 9

Floating Point Conversion... 9
FOR NEXT Statement .. 10
IF THEN ELSE Statement .. 10
Labels and GOTO Statement ... 11
Logic Operators .. 11
Math Functions and Operators .. 11
Numbers ... 12
Print Statement ... 13
Random numbers ... 13
Register Access .. 13
Strings .. 15

String Functions & Operators .. 15
Pattern Matching .. 16
Advanced Pattern Matching .. 17

Time Commands ... 18
NOW Command .. 18
TICKS Command .. 18
SLEEP Command .. 18

Timer Configuration .. 18
Example: ... 18

User Functions .. 19
Variables ... 20
WHILE Statement .. 20
Variables and Arrays .. 20

ScriptBasic Examples .. 21
Configuring DXM I/O Using ScriptBasic .. 25

Error Codes ... 30

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 3

Program the DXM Controller using action rules, read/write maps, or by using a ScriptBasic program. This short tutorial
demonstrates how to work with ScriptBasic files using the DXM Configuration Tool.

Use any text editor to create a ScriptBasic program (*.sb). Use the DXM Configuration Tool software to upload the file to the
device. Debug ScriptBasic programs using print statements to the console. All console messages are sent to the USB port.

The DXM Controller is a Modbus device that transfers information using data registers. ScriptBasic can read/write on-board
registers (local registers) as well as remote device registers using Modbus RTU protocol. After data is in ScriptBasic as
variables, any typical programming operation can be performed on the data. The custom commands for DXM ScriptBasic are
the register commands, GETREG, SETREG, MULTIGET and MULTISET. Use these commands as basic building blocks for
gathering data in ScriptBasic. See the language syntax and program examples in the DXM ScriptBasic manual for more
information.

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 4

Creating a ScriptBasic File
Use any text editor tool to create a script basic file. A good text editor that numbers lines and color codes the language
syntax makes code easier to read and shows typing or copy/paste mistakes in the code.

ScriptBasic is close to Visual Basic for syntax highlighting. After a ScriptBasic program is created, save the file using the
extension .sb. The filename needs to be filename.sb for the DXM Controller to recognize the file as a ScriptBasic file.

Figure 1 A text editor with syntax highlighting

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 5

Uploading ScriptBasic Programs to the DXM Controller
The DXM Controller runs one ScriptBasic program after it boots up.

Use the DXM Configuration Tool to upload the ScriptBasic file (*sb) to the DXM Controller before you upload the XML
configuration file. Define which ScriptBasic program to run, save the XML file, then load the XML configuration file onto the
DXM Controller.

To upload the ScriptBasic program using the DXM Configuration Tool:

1. Launch the DXM Configuration Tool software.

2. Under the Device menu select the Connection Settings. Select the COMM port or enter the IP address if using
TCP/IP

3. Go to File > Load and load a saved XML configuration file to add a ScriptBasic program.

4. Under the Settings > Scripting tab, click the Upload Script button to upload the ScriptBasic program (*.sb).

5. Click on the file name and then click on the Add Selected to Startup button. This stores the startup script name in
the XML configuration file.

6. Save the XML configuration file and upload the XML file to the device.

7. After the device is restarted, the program outputs to the USB (default console port).

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 6

Debugging a ScriptBasic Program
The DXM Configuration Tool has a built-in terminal program that will show the console output; this includes error
messages and PRINT statements from ScriptBasic. This is the primary method for debugging ScriptBasic programs. Under the
Device menu select View Traffic on COMxx; a pop-up box displays the console data traffic.

There are a few simple methods to help debug the ScriptBasic program.

• In the ScriptBasic program, write the ScriptBasic variables to local registers, then look at the local registers on the
LCD display or look at them using the DXM Configuration Tool (REGISTER VIEW). To view a local register on the
LCD display, set the LCD permissions flag to ‘read’ within the DXM Configuration Tool.

• Use PRINT statements in the ScriptBasic program to see variable values. All console output is sent to the USB port.

• Don’t forget to use the LEDs on the display, ScriptBasic can turn on or off all four LEDs to help know what’s going on
in a script.

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 7

ScriptBasic Language
The following summary provides an overview of the ScriptBasic language implementation for the DXM Controller.
ScriptBasic supports string variables, string operations, and some file operations. Custom commands have been created in
the language to incorporate Modbus register access.

Examples are shown in all upper case. ScriptBasic is not case sensitive; keywords or variable names may be upper or lower
case. For example, myvar and MYVAR are the same variable.

API Commands
ScriptBasic can access certain system variables through the common API interface that are typically accessed by a host
system. The command syntax for accessing the real time counter is:

TimeVariable = API(102)

The available system variables are shown in the table below.

API command Return Value Description

API(6) - Invoke register push

API(8) - Clear HttpLog

API(16) DXM IP Address Get IP Address

API(17) Subnet Mask Get SubNet

API(18) Gateway IP Address Get default gateway

API(28) Modbus Server ID Get Modbus Server ID

API(102) TimeStamp Get RTC value (real time clock)

API(103) Firmware Version Get firmware version

API(112) MAC Get MAC address

API(113) Model number Get Model number

API(114) Serial number Get Serial number

API(200) - Reboot

API(212) -

Cellular FOTA - Message to the cellular modem to look for updated firmware.
Forced to look in FTP.SENSONIX.NET for delta file of new version. Running this
command stops all operations on the controller and resets the controller after
5 minutes.

Assignment
Begin an assignment line with the variable you wish to assign. For example:

OurAverage = (YourVariable +MyVariable)/2
A = B +C
phi = sin (theAngle)

Comment Line
Remarks or comments are any line starting with REM or a single quote ('). Everything to the end of the line is ignored. Do not
add remarks to the end of a valid line of code.

'Comment line in ScriptBasic

DO UNTIL Statement
This command loops the code between the lines DO UNTIL and LOOP until the expression following the keywords on the
loop starting line becomes true.

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 8

DO UNTIL expression
...
commands to repeat
... LOOP

The expression is evaluated when the loop starts and each time the loop restarts. The code between the DO UNTIL and
LOOP lines is skipped when the expression evaluates to TRUE, even during the first loop.

This command is practically equivalent to the construct

WHILE NOT expression
...
commands to repeat
... WEND

You can and should use the construct that creates more readable code.

DO WHILE Statement
This command implements a looping construct that loops the code between the lines DO WHILE and LOOP until the
expression following the keywords on the loop starting line becomes false.

This command is the same as the command WHILE, but with a different syntax to be compatible with different BASIC
implementations.

do while
...
loop

You can use the construct that creates more readable code.

END Statement
End of the program. Stops program execution.

Use END to signal the end of a program. Although you can use STOP and END interchangeably, the BASIC convention is to
use END to note the end of the program and STOP to stop the program execution based on a condition specified inside the
code.

File Operations
File operations are possible using the FILEOUT and FILEIN functions. Specifying messages using the UART are directed to
the RS232 port of the microcontroller. E-mail or SMS messages can be created using the FILEOUT operation. Use TCP
Server, TCP Client or UDP for Ethernet communication. For creating/appending files on the micro SD card, the target
content written to one of five default file names on the micro SD card. Reading the SD card is currently not supported.

FILEOUT function to Write Output
Result = FILEOUT(FileIndex, Length, Flags, ContentToWrite)
FileIndex is the target, indicated by values 1-14

1 = UART
2 = E-mail message (FILEOUT only)
3 = SMS (FILEOUT only)
4 = TCP Server
5 = TCP Client
6 = UPD
10 = File 1, SbFile1.dat
11 = File 2, SbFile2.dat
12 = File 3, SbFile3.dat
13 = File 4, SbFile4.dat
14 = File 5, SbFile5.dat

Length is the character length of the content to write
0 = auto detect length
xx = character length

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 9

Flags define the file operation
0 = Append file
1 = Overwrite file, if it exists

ContentToWrite is the content to write to the UART or file

Result = 0 = successful, non-zero indicates a problem with the parameters supplied.

FILEOUT Examples
Writing data to the RS232 UART; FILEOUT(FileIndex, Length, Flags, ContentToWrite) Result = FILEOUT(1,0,0,”This string is sent
out the RS232 port”)

Sending an E-mail; FILEOUT(FileIndex, OptionalFilename, 0, E-mailAdrs, Message) Result = FILEOUT(2, SbFile10.dat, 0,
MyEmail@host.com, “Sending logfile”)

Sending an SMS; FILEOUT(FileIndex, 0, 0, Phone#, Message) Result = FILEOUT(3,0,0,”1112223333”, “This is my text
message”)

Writing data to the RS232 UART

Result = FILEOUT(1,0,0,”This string is sent out the RS232 port”)

Writing data to Ethernet; FILEOUT(FileIndex, Length, 0, ContentToWrite) Result = FILEOUT(4,0,0,”This string is sent out
Ethernet”)

Append data to SbFile1.dat; FILEOUT(FileIndex, Length, Flags, ContentToWrite) Result = FILEOUT(10,0,0,”This is the data put
into the file”)

FILEIN to Read Data
To read content use the FILEIN function

ReadData = FILEIN(FileIndex, MaxLen)
FileIndex is the target, indicated by values 1-14

1 = UART
4 = TCP Server
5 = TCP Client
6 = UPD

MaxLen is the maximum character length to read

ReadData is the string read data

FILEIN Examples
Read data from the UART

Datain = FILEIN(1,0)

Read data from Ethernet (TCP server)

TCP_Data = FILEIN(4, 50)

Ethernet Data Packets with ScriptBasic
The DXM Controller can be programmed with ScriptBasic to send data as a client or server on the Ethernet port. The data is
an ASCII string that is contained in an Ethernet TCP packet. The server port, client port and IP address are configured in the
XML file using the DXM configuration tool. Default ports are 8845 for the server port, 8847 for the client port. (8844 is the
DXM Push port)

Floating Point Conversion
Modbus protocol defines a holding register as 16-bits; however, there is a widely used de facto standard for reading and
writing data wider than 16 bits. The most common are IEEE 754 floating point, and 32-bit integer. The data simply consists of
two consecutive registers treated as a single value. Although the convention of register pairs is widely recognized,
agreement on whether the high order or low order register should come first is not standardized.

mailto:MyEmail@host.com

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 10

On the DXM Controller the read maps automatically define two consecutive Modbus read registers into floating point
when written to local Modbus registers 1001 and greater. In a Script Basic program Modbus registers are read one at a time
and must be joined together and then converted using the function LTOF before storing the value into local Modbus
registers 1001 and greater.

Example Script Basic fragment reading an external Modbus Server floating point register.

‘Read two consecutive registers that make up a floating point value.
UpperFloat = GETREG(101,SID, MBtype)
LowerFloatReg = GETREG(102,SID, MBtype)

‘Put the registers back together in one 32-bit value.
LongRegValue = (UpperFloat * 0x10000) + LowerFloatReg

‘The current definition of LongRegValue is considered an integer value; define it as a
floating point

FloatValue = LTOF(LongRegValue)

LTOF – Long integer To Floating point: This function takes a 32-bit integer in IEEE 754 format (sign, exponent, and mantissa)
and defines it as a floating point variable.

FTOL – Floating point To Long integer: This function takes a 32-bit floating point value in integer format (31:0) and defines it
as an integer.

FOR NEXT Statement
FOR NEXT statements implement a FOR loop. The variable var is assigned the value of the start expression exp_start. After
each execution of the loop body, var is incremented or decremented by the value exp_step until var reaches the stop value
exp_stop.

FOR var= exp_start TO exp_stop [STEP exp_step]
...
commands to repeat
...
NEXT var

The STEP part of the command is optional. If this part is missing, the default increment value is 1. The loop body is not
executed and the variable retains its original value when:

• the expression exp_start is larger than the expression exp_stop and exp_step is positive

• the expression exp_start is smaller than the expression exp_stop and exp_step is negative

When the loop is executed at least once, the variable is assigned the values one after the other. After the loop exits, the loop
variable holds the last value assigned to the variable.

IF THEN ELSE Statement
There are two different ways to use this command: single line IF and multi-line IF. (IF/THEN and other keywords are shown in
upper case in these examples only for clarity.)

A single line IF has the form

IF condition THEN command

There is no way to specify an ELSE part for the command in the single line version. If you need the ELSE command, use the
multi-line IF.

The multi-line IF should not contain a command directly after THEN. Use the following format:

IF condition THEN
commands
ELSE
commands
END IF

Because the ELSE command is optional, the IF/THEN command can also have the format:

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 11

IF condition THEN
commands
END IF

The condition is any valid comparison or expression. Examples include: if a > b then print "greater"

if a <> b then print "not equal"

if GETREG(3,1,0) then print "is enabled"

Conditional operators are:

= Equal

<> Not equal

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

Labels and GOTO Statement
The statement GOTO is the most famous statement of all BASIC languages. Many program theorists say that you should never
use GOTO. Even so, the statement GOTO is part of most programming languages and Script Basic is no exception.

Using the statement GOTO, you can alter the execution order of statements. GOTO statements use labels to identify program
lines. The form of a GOTO statement is

GOTO label

Labels are local within functions and subroutines. You cannot jump into a subroutine or jump out of it. Labels begin at the
start of a line, are the only thing on the line, and end with a colon.

GOTO mylabel
...
commands
...
mylabel:
...

Use of GOTO is usually discouraged and is against structural programming. Before using the GOTO statement (except ON
ERROR GOTO) think of a better solution that performs the same task without using GOTO.

Typical use of the GOTO statement includes jumping out of an error condition to the error handling code or jumping out of
a loop on a specific condition.

Logic Operators
The following is a summary of logic operators recognized in SB:

AND Logical AND - bitwise for values, or logical in "if" statements

NOT Logical NOT - bitwise for values, or logical in "if" statements

OR Logical OR - bitwise for values, or logical in "if" statements

XOR Logical Exclusive OR - bitwise for values

Use parenthesis to establish precedence as necessary.

Math Functions and Operators
The following is a summary of math operators and functions recognized in SB:

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 12

+ Addition

- Subtraction

* Multiplication

/ Division

\ Integer Division

% Modulus

^ a^b produces a raised to the power of b

ABS(n) Returns absolute value of 'n'

ACOS(n) Calculates arc cosine of 'n'

ASIN(n) Calculates arc sine of 'n'

COS(n) Calculates cosine of 'n'

FIX(n) Returns integral part of argument, rounding toward zero, i.e., int(-3.3) = -3

FRAC(n) Returns the fractional part of the argument

INT Returns integral part of argument, rounding down, i.e., int(-3.3) = -4

LOG(n) Produces the natural logarithm of n

LOG10(n) Products the logarithm of n

PI Produces the constant pi

POW(n) Produces 10 raised to the power of n

RND Provides a random number (use RANDOMIZE(n) to seed random number
generator)

SIN(n) Calculates sine of 'n'

SQR(n) Calculates square root of 'n'

Note: 'n' is in radians. Calculate radians from degrees using this equation: r = ((Degrees ÷ 180) × PI)

Numbers
ScriptBasic supports to types of numbers, integer numbers and real numbers.

Integer numbers can be used to represent integral values, while real numbers can be used to represent numbs that have
fractional part or are too large to store as integer. Integer numbers are stored in a memory location of size equivalent to a
long of the programming language C. Real numbers are stored internally as C double.

Number constants can be used in the basic program in the usual format. Integer numbers are represented in either decimal
or hexadecimal format. Decimal numbers only contain digits. Hexadecimal numbers start with the characters 0x or 0X and
are followed by hexadecimal digits. The format that many basic implementations follow using the &H characters to start a
hex number is also allowed. When a number contains a # character inside, like 2#110110 then the number preceding the #
is the RADIX of the number and the characters following the # is the number in the given radix. The following numbers are
valid integer constants in ScriptBasic:

• 123

• 0xFF , hex 0xff equals 255 decimal

• 0x255, equals 597 decimal

• 16#0123AB is hexadecimal 0123AB or 1,193,131 decimal

• &H52 equals 82 decimal

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 13

Real number constants can only be decimal and may contain a fractional or exponential part.

• 3.14

• 4.67E+4

Print Statement
You may use a Print statement to display output on the console port. An example of a print statement might be:

print "Register #5 is ", GETREG(5, 1, 0), "\n\r"

Random numbers
The RND() command returns a random number.

The RANDOMIZE() command seeds the random number generator. If the command is presented without argument, the
random number generator is seeded with the actual time. If an argument is provided, the random number generator is
seeded with the provided argument.

Register Access
You may read any local register or remote register using the GETREG function and write them using the SETREG function.

MyData = GETREG (22, SID, MBType)
MyData = MyData * 2.5
WrErr = SETREG (24, MyData, SID, MBType)

SID is the Modbus Server ID of the device to read or write the register data. A Modbus server ID of 199 refers to the local
on-board registers. A Server ID between 0 and 198 refers to an external Modbus server device on the RS-485 device bus.

DXM Modbus Server IDs

0-198 External Modbus server devices

199 Internal Local Registers

200 I/O board registers

201 Display board registers

The MBType parameter defines the Modbus Register Type and Port for the command to access. Codes 4 and 5 are not used
for write operations. Some DXMs such as the DXMR90-X1 have specific ports to identify where the server ID is located. The
table below also indicates how to access those specific ports. All DXM local registers are Holding registers. The MBType
parameter is a word with the upper byte designating the Port and the lower byte designating the register type. Combining
the port and register type to achieve the proper request. Some examples would be reading a Holding Register from Port 0
would be a value of 0x0000 or 0 decimal, reading a coil type for Port 3 would be a value of 0x303 or 771 decimal.

Lower Byte:

0 (0x000) = Holding Register

3 (0x003) = coil

4 (0x004) = input

5 (0x005) = input register

 6 (0x006) = single coil

7 (0x007) = single register

Upper Byte:

0 (0x000) = Port 0*

256 (0x100) = Port 1***

512 (0x200) = Port 2***

768 (0x300) = Port 3***

1024 (0x400) = Port 4***

1280 (0x500) = Port 5**

* Port 0 is the location for the ISM Radio, Local Registers Display Registers, and IO Board for all
DXM100/150/700/1000/1500s models, DXM1200-B1 models, DXMR90/110 models

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 14

** Port 5 is the location for the ISM Radio, Local Registers, Display Registers, and IO Board for the DXM1200-B2 models and
DXM1200-X2 models.

*** Ports 1-4 are only available on the DXMR90-X1 and DXM1200-X2 models and are associated with the physical port
connections on the outside of the device

This example uses the GETREG function to read Modbus register 22 from server ID ‘SID’ into the variable MyData, multiplies it
by 2.5, then using the SETREG function writes the value back to Modbus server ID ‘SID’ register 24.

A GETREG function returns the data when successful or one of the error codes listed below if a failure occurs. A SETREG
function when successful returns a 0; failure returns a one of the error codes listed below.

Only GETREG or SETREG functions to remote devices are subject to error conditions. GETREG or SETREG functions to
internal local registers cannot create an error and pass 32-bits values instead of the Modbus convention of 16-bit registers.

The list of possible error codes are defined below.

Register Access Errors
Return Value Register Access Errors

70001 API not available

80001 Script timeout

80003 Queue full

80004 API parameter issue

80005 Not authorized

80006 General failure

80007 Out of memory

80008 Unsupported function

80009 Syntax error

80010 Bad command

80011 General process error

80012 Result process error

80021 Transport failure

80022 Transport timeout

Multiple Register Access
Use the following functions to efficiently read or write multiple sequential registers. The result of these functions is a single
Modbus transaction.

The input/output arrays are capped at 40 registers per transaction, so the 'ArrayIndex' values shown below can range from
0-39. The 'ArrayIndex' of 0 is always used as the first register to read or write.

Write Multiple Registers: The values must first be loaded into an array with the function MBREGOUT and then sent using the
function MULTISET. Results for both functions will be zero if successful. Error codes for MULTISET are defined in the
Register Access Errors table. Error codes for MBREGOUT are 1 for invalid ArrayIndex specified.

Result = MBREGOUT (ArrayIndex, Value)
Result = MULTISET (StartRegister, RegisterCount, SID, MBtye)

Example: Write remote Server ID 5 registers 10 and 11 with values 50 and 51 (load values into array index 0 and 1)

Result = MBREGOUT (0, 50)
Result = MBREGOUT (1, 51)
Result = MULTISET (10, 2, 5, 0)

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 15

Read Multiple Registers: Commands MBREGIN and MULTIGET are used. The result codes for both are the same as the
multiple write commands. In the case of the MULTIGET result code, it will be the first register value read (array index 0).

FirstRegisterValue = MULTIGET (StartRegister, RegisterCount, SID, MBtye)
RegisterValue = MBREGIN (ArrayIndex)

Example: to read back the values from the write registers example above:

RegisterValue = MULTIGET (10, 2, 5, 0)
Register10Value = MBREGIN (0)
Register11Value = MBREGIN (1)

Strings
The simplest form of a string is a string constant in a source file. Enclose the string in double quotes.

PRINT “Hello World\n”

At the end of the string there is a special character denoted by two characters. A backslash followed by certain characters
have special meaning. The special characters that ScriptBasic handles are:

• \t is converted to a tab character.

• \n is converted to a new line character

• \r is converted to a carriage return character

• \” is converted to a double quote character. This is a way to include a double quote into a string.

• \0-9 is converted to ASCII code

All other characters remain the same after a backslash.

String Functions & Operators
String concatenate operator, &

StringTotal = “string A” & “string B”

ASC – returns the ASCII code of the first character in the argument string.

ASC(“soup”) = returns 115, ASCII value for ‘s’

CHR – returns the character for the ASCII number in the argument.

CHR(35) = returns #

INSTR – This function can be used to search for a sub-string within a string. The first argument is the string to search. The
second argument is the string to find within the first argument. The third argument is optional and is the starting index of
where to begin the search. If no third argument is present the search will be begin with the first character. The function
returns the position of where the sub-string can be found in the first string. Not found will return a value of undef.

INSTR(“abcdefghijk”, “fg”) will result in 6 as the return value.

INSTRREV – This function is the same as INSTR but will begin the search from the end of the string.

INSTRREV(“abcdefghijklmnopqrstuvwxyz”, “xyz”) will return a value of 24.

LCASE – returns the argument string in all lower case characters

LCASE(“My String”) – returns “my string”

UCASE – returns the argument string in all upper case characters

UCASE(“My String”) – returns “MY STRING”

LEFT – Creates the left of a string. The first argument is the string, the second argument is the number of characters to be
put in the result, starting from the left.

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 16

LEFT(“abcdefghi”, 3) returns a string of “abc”

RIGHT – Creates the right of a string. The first argument is the string, the second argument is the number of characters to
be put in the result, starting from the right.

RIGHT(“abcdefghi”, 3)

returns a string of “ghi”

MID – Creates a sub-string from a string. The first argument is the string, the second argument is the starting position and
the third argument is the number of characters.

MID(“abcdefghijklmnopqrstuvwxyz”, 10,3)

returns the string “jkl”

LEN – This function interprets its argument as a string and returns the length of the string.

LEN(“my string is short”)

returns a value of 18

LTRIM - Removes the space(s) from the left of the string

LTRIM(“ 123456”)

returns “123456” as the string.

RTRIM – Remove the space(s) from the right of the string

RTRIM(“123456 “)

returns “123456” as the string.

TRIM – Removes the space(s) from the left and right of the string.

TRIM(“ abcdef “)

returns “abcdef” as the string.

REPLACE – This function replace one or more occurrences of a sub-string in a string. The first argument is the base string,
the second is the search string, and the third is the replacement string. The fourth and fifth arguments are optional. The
fourth argument is the number of instances to replace and the fifth argument may specify a starting position.

REPLACE(“abc abc abc abc”, “b”, “x”, 2, 4)

replaces two instances of ‘b’ with ‘x’ starting at the 4th index. The resulting string is “abc axc axc abc” SPACE – This function
returns a string of N spaces.

SPACE(10)

returns a string of 10 spaces.

SPLIT – Takes a string and splits it into variables using a second string as a delimiter.

SPLIT “abcdef, ghi, jkl, mno” BY “,” TO cmd, func, arg1, arg2

result is four variables, cmd = “abcdef”, func – “ghi”, arg1= “jkl”, arg2 = “mno” SPLITA – Similar to SPLIT but the result is
stored in an array.

SPLITA “CMD0001 1234 2345 456” BY “ “ TO MyArray

result is MyArray [0]= CMD0001, MyArray [1] = “1234”, MyArray [2] = “2345”, MyArray[3] = “456” STRREVERSE – This
function takes a string input and reverses the order of the entire string.

STRREVERSE(“abcdefghi”)

The return string is “ihgfedcba”

Pattern Matching

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 17

LIKE – The operator LIKE compares a string to a pattern. If the pattern matches the string, the result of the operator is true
(-1) otherwise the result is false (0) The pattern may contain normal characters, wild card characters and joker characters.
The normal characters match themselves. The wild card characters match one or more characters from the set they are for.
The joker characters match one character from the set they stand for.

PRINT “0123456789abcdefghi” LIKE “*abc*”, “\n”
PRINT “0123456789abcdefghi” LIKE “0123*”, “\n”
PRINT “0123456789abcdefghi” LIKE “abc” , “\n”

The three code lines will print out:

-1
-1
0

The wild card character * matches a list of characters of any code. The joker character ? matches a single character of any
code. The wild card character is the most general wild card because it matches one or more of any character. There are
other wild card characters. The character # matches one or more digits, $ matches one or more alphanumeric characters
and the @ matches one or more alpha characters.

* - all characters #
- 0123456789
$ - 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ @ -
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

A space in the pattern matches one or more spaces, but the space is not a regular wild card character.

We can match a string to a pattern, but that is little use, unless we can tell what substring the joker or wildcard characters
matched. The function joker is used to indicate matches for the joker or wildcard characters. The joker function uses an
integer argument starting from 1 and the result is the substring that the last pattern matching operator found to match the
joker or wild card character. The JOKER index of 1 will reference the first special character in the pattern field, the next
special character in the pattern field will use index 2.

For example:

Z = “12*24” LIKE “#*#”
PRINT joker(1),” “, joker(3)

The output will be 1 24. To specifically look for a wild card character use the ~ (tilde character)

Z = “12*24” LIKE “#~*#”
PRINT joker(1),” “ joker(3)

The output will be 12 24.

Advanced Pattern Matching
The rules for wild card characters and the joker character can be set to alter the set of characters that a joker or wild card
character matches. There are 13 characters that can play joker or wild card character roles in pattern matching

* # $ @ ? & % ! + / | < >

When the program starts only the first five characters have special meaning the others are normal characters. To change
the roles of a character the program has to execute a SET JOKER or SET WILD command.

SET JOKER “&” TO “012345”
SET WILD “+” TO “abcdefgh”

The first character should be the joker or wild card character the second string should contain all the characters that the
joker or wild card character matches.

The command SET JOKER alters the behavior of the character to be a joker character matching a single character in the
compare string. The SET WILD command alters the behavior of the character to be a wild card character matching one or
more characters in the compare string.

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 18

If a character is currently a joker or wild card character use the SET NO JOKER or SET NO WILD to set the character to a
normal character.

SET NO JOKER “&” SET NO WILD “*”

Time Commands
The time commands within ScriptBasic are used to create timing based programming. Two commands exist to show
different resolutions of time since boot. The NOW command is in second increments, the TICKS command is in 10ms
increments, both show the time since the last boot time of the DXM controller. The SLEEP command is a delay mechanism
that pauses program execution for a period of seconds. Local registers defined as Timers (or counters) can be created from
any local registers to provide a method to manage time, without the worry of roll overs.

Use the DXM Configuration Tool to define any local register to be a timer register that will increment every 100ms or 1
second and can be reset with the SETREG function.

NOW Command
The NOW command provides the number of seconds since bootup. Saving the value of NOW in a variable and then
calculating the difference to current time allows measurement of real time. The NOW command can only provide the
seconds since the last boot time; it cannot assign a new value to NOW. The NOW count is created from a 1ms counter
divided by 1000. The 1 ms counter rolls over at (2^32) or 4,294,967,296. So the NOW value rolls over to zero at 4294967 or
about 50 days. The user must manage the roll over to correctly deal with timing functions within ScriptBasic.

Get the current time since boot

TimeStamp = NOW

TICKS Command
TICKS Command is similar to the NOW command except it provides the number of 10 ms counts since the last boot-up. The
TICKS command can only provide the number of 10 ms counts since the last boot time; it cannot assign a new value to
TICKS. The TICKS count is created from a 1 ms counter divided by

10. The 1 ms counter rolls over at (2^32) or 4,294,967,296. So the TICKS value rolls over to zero at 429496729 or about 50
days.

Get the current time since boot

CountTime10ms = TICKS

SLEEP Command
The function SLEEP suspends program execution for some number of seconds. Examples:

SLEEP (5)
SLEEP (0.25)

In the first example the program execution is paused for 5 seconds. The second example pauses for a quarter of a second.

Timer Configuration
Any local register can be defined as counter register that just counts in 0.1 seconds or 1 second increments. The register
can be reset to zero at any time which makes it ideal for creating a timer mechanism to manage time periods. See the DXM
Configuration tool for defining local registers as counters.

Example:
With local register 10 defined as a timer the ScriptBasic program waits until 15 minutes has elapsed then set local register 15
to one for a couple of seconds then set it to zero.

' Basic timer usage.
' local register 10 must be defined as a counter register '

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 19

Timer_reg = 10
Output_reg = 15
' MaxCount is 15 minutes, 900 seconds or 9000 .1 second increments
MaxCount = 9000
LocalReg = 199
HoldingReg = 0 '
'Reset timer

FUNCTION ResetTimer(TReg)

SETREG(TReg, 0, LocalReg, HoldingReg)

END FUNCTION

'

FUNCTION FlashLight

SETREG (Output_reg, 1, LocalReg, HoldingReg)

SLEEP(2)

SETREG (Output_reg, 0, LocalReg, HoldingReg)

END FUNCTION

'
' Initialize count ResetTimer(Timer_reg)

SETREG(Output_reg, 0, LocalReg, HoldingReg)

WHILE (1)

IF GETREG(Timer_reg, LocalReg, HoldingReg) >= MaxCount THEN

' Timer has reached the limit, reset it to start over...

ResetTimer(Timer_reg)
FlashLight

END IF

'The rest of the main control loop....
' hopefully doing something useful...

WEND

User Functions
Use the FUNCTION command to define a function. A function is a piece of code called by the BASIC program from the main
part or from a function or subroutine.

FUNCTION fun(a,b,c)
...
fun = returnvalue
...
END FUNCTION

The end of the function is defined by the line containing the keywords END FUNCTION. This function would be called by the
line x=fun(a,b,c) and the result would be placed in 'x'.

The SUB command should be used to define a subroutine. A subroutine is a piece of code called by the BASIC program from
the main part or from a function or subroutine.

SUB sub(a,b,c)
...
END SUB

The end of the subroutine is defined by the line containing the keywords END SUB.

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 20

Note that functions and subroutines are not really different in ScriptBasic. ScriptBasic allows you to return a value from a
subroutine and to call a function using the command CALL. It is just a convention to have separate SUB and FUNCTION
declarations. You would call this subroutine with the line CALL sub.

Variables
Variables are core entities of ScriptBasic and store string, real, or integer values. Variable names start with alpha
characters, underscore, dollar sign or colon and from the second character they may contain digit characters in addition to
all these characters. The last character of a name should not be a colon.

WHILE Statement
Implements the 'while' loop as it is usually done in most BASIC implementations. The loop starts with the command WHILE
and finishes with the line containing the keyword WEND. The keyword WHILE is followed by an expression and the loop is
executes until the expression is no longer true.

while expression
...
commands to repeat
...
wend

The expression is evaluated when the loop starts and each time the loop restarts. The code between the WHILE and WEND
lines is skipped when the expression evaluates to FALSE, even during the first loop.

If a condition requires exiting the loop from within the loop, use the GOTO command.

Variables and Arrays
Variables may be any name that starts with a letter and, after the first letter, may also contain digits, underscore, and
dollar sign (for old style denotation of string variables). Variables are automatically typed as integer, double (floating point),
or string according to the context in which they are used and may dynamically change type during program execution.

Arrays are created automatically as soon as you use subscripts. Uninitialized elements of the arrays return "undef". Array
subscripts use square brackets (not parenthesis that are easily confused with function calls). For example:

a[1] = 45.9
a[2] = 99.8
a[3] = "something else"
a[4,12] = 10

These are all valid elements of the same array. Normally the index values must be integer. However, SB also supports
associative arrays. Associative arrays use "curly" brackets. For example:

animal{"cat"} = "Garfield"
animal{"dog"} = "Snoopy"
animal{"tiger"} = "Tony"

UBOUND – Use to determine the upper occupied index of an array. LBOUND – Use to determine the lowest occupied index
of an array.

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 21

ScriptBasic Examples
A simple program structure to follow is to declare variables first, then functions and then the main program body. Add
comments and indentation to make the code easier to understand.

‘Comments
Global variables
Functions
Local variables
commands, assignments, loops, etc.
Main program
commands, assignments, loops, etc.

Example of a function called MEDIANFILTER. Passes a variable list ‘alist’ and returns the middle value once it is sorted.

‘Median filter, sorts a list of numbers then returns the middle value of the list

FUNCTION MEDIANFILTER(alist)

LOCAL NotSorted, Midpoint

LOCAL x, k

NotSorted = 1

WHILE NotSorted <> 0

NotSorted = 0

FOR x = 1 to (ubound(alist)-1)

IF (alist[x] > alist[x+1]) THEN

k = alist[x]

alist[x] = alist[x+1]

alist[x+1] = k

NotSorted = 1

WEND

NEXT x

END IF

Midpoint = (ubound(alist)/2)

 MEDIANFILTER = alist[Midpoint]

END FUNCTION

Example of a function using GETREG to read local register values.

'Combine two 16-bit register reads into one 32-bit value. Check for negative values
FUNCTION COMBINEINT(upper_reg, lower_reg)
LOCAL a, b, c, NegFlag, LocalReg, MBtype LocalReg = 199

MBtype = 0

NegFlag = 0

a = GETREG(upper_reg,LocalReg,MBtype)

IF (a AND 0x8000) THEN

'PRINT "Negative \r\n"
a = (a XOR 0xFFFF)

NegFlag = 1

END IF

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 22

b = GETREG(lower_reg,LocalReg,MBtype)

IF (NegFlag = 1) THEN

b = (b XOR 0xFFFF)

END IF

c = (a * 0x10000) + b
IF (NegFlag = 1) THEN

c = c + 1

END IF

CombineInt = c
'PRINT c, "\r\n"

END FUNCTION

Example of a state machine function that uses the NOW command to define when to run operations.

FUNCTION StateMachine
'State machine definitions for the periodic reading of temp/humidity ' TH_State = 0
current state of the state machine
' TH_Idle= 0 initial state
' TH_Wait = 1 wait time between samples
' TH_Sample = 2 get samples from remote sensor ' TH_Error = 3 error state -
unknown condition

LOCAL StartState, WrErr, MBtype
WrErr = 0
MBtype = 0
StartState = TH_State
WrErr = SETREG (SM_reg, TH_State, LocalRegSID, MBtype)

IF TH_State = TH_Idle THEN
StartTime = NOW

TH_State = TH_Wait
ELSEIF TH_State = TH_Wait THEN

IF NOW >= (StartTime + WaitTime) THEN
 TH_State = TH_Sample
ELSE

END IF

TH_State = TH_Wait

ELSEIF TH_State = TH_Sample THEN
GetTempHumidityData
TH_State = TH_Idle

ELSE

END IF

TH_State = TH_Error

IF StartState <> TH_State THEN

PRINT "\r\n Time ",NOW," SM Started-> ",THState[StartState]," End->
",THState[TH_State]," \r\n"

END IF

END FUNCTION

Example of an entire program with a state machine to read the temp/humidity sensor and turn on/off LEDs to indicate

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 23

rising/falling temperatures.

'Local Register definitions
Humidity_reg =

TempC_reg
= 2

SM_reg
 =

'Modbus Registers on the Temp Humidity sensor

SensorHumidity_reg = 1
SensorTempC_reg = 2

SensorTempF_reg = 3

'Display LED's
ScriptRunnning_LED1_reg = 1102
TempGoingUp_LED2_reg = 1103
TempGoingDown_LED3_reg = 1104
CommsError_LED4_reg = 1105
'Global Variables internal to ScriptBasic TempC = 0
Humidity = 0

LastValueTempC
LastValueHumidity

= 0
= 0

StartTime = 0

WaitTime = 15

WrErr = 0

'Set Modbus type to holding registers
MBtype = 0

'State machine definitions for the periodic reading of temp/humidity
TH_State = 0

TH_Idle = 0

TH_Wait = 1

TH_Sample = 2

TH_Error = 3

'Make an array of state names to make it easier to read
THState[0] = "Temp/Humd Idle"

THState[1] = "Temp/Humd Wait"
THState[2] = "Temp/Humd Sample"
THState[3] = "Temp/Humd Error"

'Define Modbus Server ID's for different
devices LocalRegSID = 199

TH_SID = 1

IoBoardSID = 200

DisplaySID = 201

'Function to read the T/H sensor

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 24

FUNCTION GetTempHumidityData

LastValueTempC = TempC
LastValueHumidity = Humidity

Humidity =GETREG(SensorHumidity_reg, TH_SID, MBtype)
TempC = GETREG(SensorTempC_reg, TH_SID, MBtype)

IF Humidity > 65535 or TempC > 65535 THEN

PRINT "Read Error - humidity / temp reading...", Humidity," ",TempC,

"\n\r"

END IF

WrErr = SETREG (Humidity_reg, Humidity, LocalRegSID, MBtype)
WrErr = SETREG (TempC_reg, TempC, LocalRegSID , MBtype)

END FUNCTION

FUNCTION StateMachine

'State machine definitions for the periodic reading of temp/humidity
' TH_State = 0 current state of the state machine

' TH_Idle = 0 initial state

' TH_Wait = 1 wait time between samples

' TH_Sample = 2 get samples from remote sensor
' TH_Error = 3 error state - unknown condition

LOCAL StartState
StartState = TH_State

WrErr = SETREG (SM_reg, TH_State, LocalRegSID, MBtype)

IF TH_State = TH_Idle THEN
StartTime = NOW
TH_State = TH_Wait

ELSEIF TH_State = TH_Wait THEN

IF NOW >= (StartTime + WaitTime) THEN
TH_State = TH_SampleELSE

END IF

TH_State = TH_Wait

ELSEIF TH_State = TH_Sample THEN GetTempHumidityData TH_State = TH_IdleELSE

END IF

TH_State = TH_Error

IF StartState <> TH_State THEN

PRINT "\r\n Time ",NOW," SM Started-> ",THState[StartState]," End->
",THState[TH_State]," \r\n"

END IF

END FUNCTION

FUNCTION LED_driver

IF LastValueTempC < TempC THEN

WrErr = SETREG (TempGoingUp_LED2_reg,1,DisplaySID, MBtype)ELSE

END IF

WrErr = SETREG (TempGoingUp_LED2_reg,0,DisplaySID, MBtype)

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 25

IF LastValueTempC > TempC THEN

WrErr = SETREG (TempGoingDown_LED3_reg,1,DisplaySID, MBtype)ELSE

END IF

WrErr = SETREG (TempGoingDown_LED3_reg,0,DisplaySID, MBtype)

IF (Humidity > 65535) OR (TempC > 65535) THEN

WrErr = SETREG (CommsError_LED4_reg,1,DisplaySID, MBtype)

ELSE END IF

WrErr = SETREG (CommsError_LED4_reg,0,DisplaySID, MBtype)

IF GETREG(ScriptRunnning_LED1_reg, DisplaySID, MBtype) THEN

WrErr = SETREG (ScriptRunnning_LED1_reg,0,DisplaySID, MBtype)ELSE END IF

WrErr = SETREG (ScriptRunnning_LED1_reg,1,DisplaySID, MBtype)

END FUNCTION

‘Main program loop
BEGIN:

PRINT "Script Starting\r\n"
ITERATE:

'PRINT "\r\n Time = ",NOW," \r\n"
StateMachine

LED_driver
Sleep(1)

GOTO ITERATE
END

Configuring DXM I/O Using ScriptBasic
The universal inputs on a DXM Controller are configurable inputs that are useful and flexible, but more flexibility can create
complexity that is difficult to manage. ScriptBasic can help manage the options into a single start-up script that can be used
to clone multiple DXM Controllers or just help collect all the parameter changes for an application.

The attached ScriptBasic file contains the basic building blocks to create a program that will set up parameters on the DXM
I/O base board. This won't be a perfect script for any particular application but should provide the basic understanding of
DXM configuration using ScriptBasic.

The first 50 or so lines of the program are defining variables with a few added comments. The next 90 lines are functions
that group certain processes together. The functions are:

• SetFactoryDefaults. This function writes a couple of Modbus registers in the I/O board that force the I/O board to
restore the factory default settings for all the I/O. This erases any parameter settings that may have been done.
Most likely this function will be not be called by the program during normal operation, but it is handy if you need
it.

• InitArrays. This function puts the Modbus register addresses in arrays for each universal input. For example, all
universal inputs have a parameter called Input Type. The Modbus address to access the Input Type for universal
input 1 is stored in the variable InputType_reg[1]. The array index '[1]' is the universal input number 1 through 8.
The Modbus register address for the input type on universal input 5 will be stored in InputType_reg[5].

• GetIOreg(regnum). This function does a Modbus read to the I/O board to get one piece of data. This function has
the ability to retry a read command five times before it gives up. Normally reading or writing registers within the
controller does not fail, but because I have the SetFactoryDefaults function in the script, the I/O board resets and
causes read failures until the board finishes booting.

• ReadAllParams. This function reads the parameters, saves the values in arrays, and prints them out to the console.

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 26

The main body of the program starts with the label 'BEGIN:'. The program starts and finishes with turning on an LED on the
display to show when the script is running. First, the InitArrays and ReadAllParams functions are called to initialize the
process. Then Modbus register writes are performed to set the actual parameters to adjust. This example is simple -- only
four items are written -- but the list could be hundreds of parameters long.

' Initialization script for I/O board
' Resets the I/O board to factory defaults then prints out the parameter settings. '
'I/O board Modbus server ID = 200 IO_SID = 200
DISPLAY_SID = 201 '
' Define all the I/O board Modbus registers as Holding registers.
MBType = 0 '
'Display LED to indicate the script running.
LED1_reg = 1102 '
' Initialization register on the I/O board for restoring factory defaults. IO_Reset_reg
= 4151
IO_FactoryRestore_reg = 4152 '
' Universal input type codes. Each universal input has a factory default of '8'
Type_NPN = 0
Type_PNP = 1
Type_Ma = 2
Type_Vdc = 3
Type_Thermistor = 4
Type_Pot = 5
Type_Bridge = 7
Type_NPN_raw = 8 '
' The I/O board charging circuit default operation is battery backup; reg 6071 = 1 '
Change to enable the charging circuit to a solar system by setting reg 6071 = 0 '
Default = ChargingDefintion_reg = BatteryBackupEnabled
ChargingDefintion_reg = 6071
SolarChargerEnabled = 0
BatteryBackupEnabled = 1 '
' Enable a universal input as a synchronous counter. (defaults = disabled)
Disable_Rising = 0
Enable_Rising = 1
Disable_Falling = 0
Enable_Falling = 1 '
'Enable full scale, default 0, Modbus registers stores uAmps or mVolts Enable_FullScale
= 1
Disable_FullScale = 0 '
'Set temperature units to Celsius or Fahrenheit, default = Celsius UnitsCelsius = 0
UnitsFahrenheit = 1 '
'WrError will save SETREG status information WrError = 0
'** '
Various functions created to group procedures together.
'
FUNCTION SetFactoryDefaults
'Restore I/O factory defaults on the I/O board

Wr_Error = SETREG (IO_FactoryRestore_reg, 1, IO_SID, MBType)
Wr_Error = SETREG (IO_Reset_reg, 1, IO_SID, MBType)

SLEEP(10)
END FUNCTION
'

FUNCTION InitArrays

' Initialize arrays for the data values.

FOR x = 1 to 8

EnableFullScale_data[x] = 0

TempC_F_data[x] = 0

InputType_data[x] = 0

Threshold_data[x] = 0

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 27

Hysteresis_data[x] = 0

EnableRising_data[x] = 0

EnableFalling_data[x] = 0

NEXT x

' Define all the Modbus registers on the I/O board for the universal inputs 1
EnableFullScale_reg[1] = 3303

TempC_F_reg[1] = 3304

InputType_reg[1] = 3306

Threshold_reg[1] = 3308

Hysteresis_reg[1] = 3309

EnableRising_reg[1] = 4908

EnableFalling_reg[1] = 4909

'
' Create the rest of the universal input register addresses, U2- U8, each input is
offset by 20 from the previous input.
FOR x = 2 to 8

EnableFullScale_reg[x] = EnableFullScale_reg[x-1] + 20
TempC_F_reg[x] = TempC_F_reg[x-1] + 20
InputType_reg[x] = InputType_reg[x-1] + 20

Threshold_reg[x] = Threshold_reg[x-1] + 20
Hysteresis_reg[x] = Hysteresis_reg[x-1] + 20
EnableRising_reg[x] = EnableRising_reg[x-1] + 20
EnableFalling_reg[x] = EnableFalling_reg[x-1] + 20

NEXT x

' Print all the register numbers, remove the comments if you want the program to
print the register addresses.

'FOR x = 1 to 8

' PRINT " Universal Input ",x," register numbers.\n\r"

' PRINT " EnableFullScale_reg = ",EnableFullScale_reg[x],"\n\r"
' PRINT " TempC_F_reg = ",TempC_F_reg[x],"\n\r"

' PRINT " InputType_reg = ",InputType_reg[x],"\n\r"
' PRINT " Threshold_reg = ",Threshold_reg[x],"\n\r"
' PRINT " Hysteresis_reg = ",Hysteresis_reg[x],"\n\r"

' PRINT " EnableRising_reg = ",EnableRising_reg[x],"\n\r"

' PRINT " EnableFalling_reg = ",EnableFalling_reg[x],"\n\r\n\r"
'NEXT x

'

END FUNCTION
'

FUNCTION GetIOreg(regnum)

' Simple function to retry if an error occurs, waiting for the I/O board to reset.

LOCAL x, retry, maxcnt, data
retry = 1

maxcnt = 5

data = GETREG(regnum, IO_SID, MBType)
WHILE (data > 65535) AND (retry <= maxcnt)

data = GETREG(regnum, IO_SID, MBType)

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 28

retry = retry + 1

PRINT "-- read error -= retry ",retry,"\n\r"

WEND

GetIOreg = data
END FUNCTION

'

FUNCTION ReadAllParams

' Read all the current parameter values from the I/O board.

LOCAL x

FOR x = 1 to 8

EnableFullScale_data[x] = GetIOreg(EnableFullScale_reg[x])
TempC_F_data[x] = GetIOreg(TempC_F_reg[x])
InputType_data[x] = GetIOreg(InputType_reg[x])
Threshold_data[x] = GetIOreg(Threshold_reg[x])
Hysteresis_data[x] = GetIOreg(Hysteresis_reg[x])
EnableRising_data[x] = GetIOreg(EnableRising_reg[x])
EnableFalling_data[x] = GetIOreg(EnableFalling_reg[x])

' Print out what was read from the I/O board.
PRINT "Universal Input ",x," Parameters\n\r"

PRINT " EnableFullScale_data = ",EnableFullScale_data[x],"\n\r"
PRINT " TempC_F_data = ",TempC_F_data[x],"\n\r"

PRINT " InputType_data = ",InputType_data[x],"\n\r"
PRINT " Threshold_data = ",Threshold_data[x],"\n\r"
PRINT " Hysteresis_data = ",Hysteresis_data[x],"\n\r"

PRINT " EnableRising_data = ",EnableRising_data[x],"\n\r"

PRINT " EnableFalling_data = ",EnableFalling_data[x],"\n\r\n\r"

NEXT x
END FUNCTION
'

' The main body of the program.
BEGIN:

' Turn on display LED 1 to indicate we are starting script...
WrError = SETREG (LED1_reg, 1, DISPLAY_SID, MBType)

'Reset the I/O board back to factory defaults on the I/O, may want to comment out.
'SetFactoryDefaults

'Create arrays of register addresses and data
InitArrays

'Read the I/O board universal input parameters
ReadAllParams

'***

'************ Use SETREG commands to set parameters on I/O board

'***

'SETREG is the command for writing Modbus registers

'WrError = SETREG ('Register address', 'Register value', 'Modbus server ID',
'Modbus

type')
'

'Set the charging algorithm to backup battery

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 29

WrError = SETREG (ChargingDefintion_reg, BatteryBackupEnabled, IO_SID, MBType)
'Set the input type to Potentiometer for universal input 1

WrError = SETREG (InputType_reg[1], Type_Pot, IO_SID, MBType)
'Set the input type to Current (mA) for universal input 3
WrError = SETREG (InputType_reg[3], Type_Ma, IO_SID, MBType)
'Set the temperature units on universal input 4 to Celsius
WrError = SETREG (TempC_F_reg[4], UnitsCelsius, IO_SID, MBType)
'

' Add more SETREG commands here...
'

' Turn off display LED 1 to indicate we are done...
WrError = SETREG (LED1_reg, 0,DISPLAY_SID,MBType)
END

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 30

Error Codes
Error Code Description

0 SUCCESS

1 Not enough memory

2 Function cannot return a whole array

3 Division by zero or other calculation error

4 Argument to operator is undefined

5 The command or sub was called the wrong way

6 There are not enough arguments of the module function

7 The argument passed to a module function is not the needed type

8 The argument passed to a module function is out of the accepted range

9 The module experiences difficulties reading the file

10 The module experiences difficulties writing the file

11 The module experiences handling the file

12 There is a circular reference in memory

13 The module cannot be unloaded, because it was not loaded

14 Some modules were active and could not be unloaded

15 The module cannot be unloaded, because it is currently active

16 The requested module cannot be loaded

17 The requested function does not exist in the module

18 The module did not initialize correctly

19 The module was developed for a different version of ScriptBasic

20 File number is out of range, it should be between 1 and 512

21 The file number is already used

22 The file cannot be opened

23 The file is not opened

24 The lock type is invalid

25 The print command failed. The file may be locked by another process.

26 Directory cannot be created

27 The directory or file could not be deleted

28 Command is not implemented and no currently loaded extension module defined behavior for it

29 The character cannot be a joker or wild card character

30 The code tried to execute a resume while not being in error correction code

31 The directory name in open directory is invalid

32 Invalid option for directory open

33 The directory cannot be opened

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 31

Error Code Description

34 The record length is invalid in the open statements (undefined, zero or negative)

35 The current directory cannot be retrieved for some reason

36 The directory name in chdir cannot be undef

37 Cannot change the current working directory to the desired directory

38 The command RETURN cannot be executed, because there is nowhere to return

39 The argument for the function address is invalid

40 The attribute value or symbol is invalid in the set file command

41 The user does not exist

42 The shown command is not supported on Win95 and Win98

43 Cannot change owner

44 The file name is invalid

45 Setting the create time of the file has failed

46 Setting the modify time of the file has failed

47 Setting the access time of the file has failed

48 The specified time format is invalid

49 The time is not valid, cannot be earlier than January 1, 1970. 00:00

50 Extension specific error: %s

51 The operation can be done on files only and not on sockets

52 The embedding application tried to start the code at an invalid location

53 Mandatory argument is missing

54 Subprocess did not finish within time limits

55 The module cannot be unloaded

56 The preprocessor said to abort program compilation or execution

57 The file is either corrupt or was written with a different version of sb

58 The compiled program contains no executable code

59 Code file cannot be saved

60 The interpreter file cannot be read

61 Bad syntax in include statement

62 Include file is not found

63 Too many includes, probably recursive include

64 Preprocessor \%s\" is not defined"

65 Preprocessor name is too long

66 Preprocessor \%s\" is not available"

67 Preprocessor \%s\" is invalid"

68 The file cannot be read

69 The file is empty or is not readable

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 32

Error Code Description

70 The external preprocessor failed

71 The preprocessor executable is not configured

72 The preprocessor temporary directory is not configured

73 Symbol is too long

74 String is not terminated anywhere before end of file

75 String is not terminated anywhere before end of line

76 The number contains invalid radix. BASE#NNN numbers are available for 2<=BASE<=36 only

77 The BASE#NNN formatted number digit is out of range

78 Program counter points out of the code. The executed code is corrupt

79 Internal error or the cached code is corrupt

80 Internal error or the cached code is corrupt

81 Invalid op code is in the code table

82 The code exists, but it is not implemented

83 Internal error or the cached code is corrupt

84 Internal error or the cached code is corrupt

85 Internal error when releasing a variable it has no correct type

86 Internal error when releasing undefined variable, nonsense

87 Internal error when releasing variable reference found

88 Any non-classified internal error

89 Local variable referenced in global context or in a local context having no local variables

90 Internal error or the cached code is corrupt

91 Internal error or the cached code is corrupt

92 Internal error or the cached code is corrupt

93 Internal error or the cached code is corrupt

94 Internal error or the cached code is corrupt

95 Internal error or the cached code is corrupt

96 Internal error or the cached code is corrupt

97 The user function is undefined

98 Recursive function calls exceeded configuration limit

99 Program is running too long, probably infinite loop

100 Internal error in the syntax analyzer

101 A line label was defined more than once

102 A label \%s\ “was not defined during syntax analysis”

103 The user function was already defined

104 The user function \%s\" is used but is not defined"

105 There was no module started when an end module statement was found

ScriptBasic Instruction Manual

p/n 191745 Rev H ©Banner Engineering Corp. 33

Error Code Description

106 A module was not closed at end of file

107 The name space grew too long

108 Variable and namespace does not fit into the buffer

109 Closing) is missing in expression

110 Opening (is missing in sub call

111 Closing] is missing following array indices

112 Closing } is missing following associative array indices

113 Built in function needs arguments

114 Built in function has too few arguments

115 Built in function has too many arguments

116 Erroneous nesting of constructs like IF/ELSIF/ELSE/ENDIF/REPEAT/LOOP/WHILE and so on

117 Nested construct remained unclosed when local end

118 Syntax error, no syntax definition matches the line

119 Fatal syntax error, no syntax definition matches the line

120 There are more than MAX_SAME_LABEL labels referencing the same line

121 Global variable was not declared

122 Compiler option \%s\" is not implemented"

123 Global variable \%s\" is redefined"

124 Variable \%s\" cannot be used as global and local in a sub"

125 The variable is declared as constant. Needs 'var' declaration

126 DupVar cannot duplicate array. This is an internal error

127 The format string contains $n where n is out of range

128 The provided buffer is too short

129 Invalid pattern contains no character after the ~ sign

130 The provided string array is too short

131 Operation failed

132 The provided buffer is too short

133 Port specific undefined error

	Creating a ScriptBasic File
	Uploading ScriptBasic Programs to the DXM Controller
	Debugging a ScriptBasic Program
	ScriptBasic Language
	API Commands
	Assignment
	Comment Line
	DO UNTIL Statement
	DO WHILE Statement
	END Statement
	File Operations
	FILEOUT function to Write Output
	FILEOUT Examples

	FILEIN to Read Data
	FILEIN Examples

	Ethernet Data Packets with ScriptBasic

	Floating Point Conversion
	FOR NEXT Statement
	IF THEN ELSE Statement
	Labels and GOTO Statement
	Logic Operators
	Math Functions and Operators
	Numbers
	Print Statement
	Random numbers
	Register Access
	Register Access Errors
	Multiple Register Access

	Strings
	String Functions & Operators
	Pattern Matching
	Advanced Pattern Matching

	Time Commands
	NOW Command
	TICKS Command
	SLEEP Command

	Timer Configuration
	Example:

	User Functions
	Variables
	WHILE Statement
	Variables and Arrays

	ScriptBasic Examples
	Configuring DXM I/O Using ScriptBasic

	Error Codes

