

Banner Engineering Corp

DXM Controller API

7/1/2019
186221 Rev H

DXM Controller Protocol

 page 2

Contents

Overview ... 3

Device-Initiated Protocol .. 3
Input Parameters ... 4
GET Request ... 4
POST Request .. 6
Authentication ... 7
Messages to the Remote Device .. 7
DXM Controller File Transfer from Webserver .. 9

Host-Initiated Protocol .. 12
Read Local Register .. 13
Write Local Register .. 13
Read Remote Register .. 13
Write Remote Register .. 13
Invoke Register Push .. 14
Clear Http.log File ... 14
Get Default IP .. 14
Get Default Subnet ... 14
Get Default Gateway ... 14
Get Modbus SLID ... 15
Set RTC ... 15
Get RTC .. 15
Get Firmware version .. 15
Get MAC Address ... 15
Get Model Number ... 16
Get Serial Number .. 16
Reset Device ... 16
Cellular Provisioning ... 16
Push Webserver Page ... 16
Push Webserver Server/IP .. 17
Push Webserver Host Header .. 17
Push Webserver Site ID .. 17
File Transfer... 17
API FTP Begin (Open File Command) ... 18
API FTP Data (Send / Deliver Command) ... 18
API FTP End (Close File) ... 19
File System List ... 20
File System File Exists .. 20
File System Delete .. 20
File System Rename ... 21
File System List Extended .. 21

DXM Controller Protocol

 page 3

Overview
The table below gives a functional overview of the communications options with the DXM controller. The
two physical media are Ethernet or Cellular. The two options for communications methods are Device-
Initiated (DXM Controller to Host) or Host-initiated (Host to DXM Controller) communications.

Device-Initiated Communications
(Mobile Originated Data)

Host-Initiated Commutations
(Mobile Terminated Communications)

The DXM Controller creates the data to send to the
host, the host can return information within the
acknowledgement packets to control the device.
Data is typically sent on a cyclical schedule.

A host system sends messages directly to the DXM
controller. This requires a private network connection
(VPN) when using Cellular or when using Ethernet the
host path will require the firewalls to be managed.

Ethernet The DXM Controller will require the ability to send
GET and POST messages to a host system. Some
network firewall settings will block outgoing POST
messages. Most HTTP GET packets will be allowed,
these are typical of browser based messages.

Control messages to the DXM device will be sent in
the acknowledgement packet from GET messages.

The host system can only send control messages to
the DXM Controller at the time the device sends a
message to the host. This is typically on a cyclical
time schedule.

A host system will need to have direct access to the IP
address of the DXM controller. From a remote host the
network firewall settings will need to allow access to
the DXM controller. A host on the same internal
network as the DXM controller should be able to
access the device using the API functions. Immediate
control of the DXM controller is possible.

Cellular The DXM Controller will send GET and POST packets
using a standard dynamic cellular connection.
Control messages to the DXM device will be sent in
the acknowledgement packet from HTTP GET
messages.

The host system can only send control messages to
the DXM Controller at the time the device sends a
message to the host. This is typically on a cyclical
time schedule.

The host system can send an email/text message to
the DXM device to force the device to 'call home'.
This allows for immediate interaction with the DXM
Controller.

A private network (VPN) must be established to
communicate directly with the DXM controller using
API commands. This allows the host and the DXM
controller to communicate with each other using the
respective IP addresses. Immediate control of the DXM
controller is possible.

Device-Initiated Protocol
This section describes the device-initiated protocol used by the DXM Controller. The HTTP GET request
is used as the basic register push method. The acknowledgement messages to the GET requests may
also contain messages to the controller to indicate other actions (output updates, for example). At a
minimum, the acknowledgement to a GET request must contain the site ID string. HTTP POST requests
are used when log data is sent, typically larger data sets.

Outputs are updated on a cyclical schedule; that is, the next time interval the device sends a GET
request the acknowledgement message contains the updates. For updating outputs immediately, an
email is sent to the phone number (if cellular connected). The device immediately corresponds with the

DXM Controller Protocol

 page 4

webserver. If Ethernet connected, a response can be created by sending a GET request to
‘triggerpush.htm’, port 80 on the devices’ internal webserver. Only an acknowledgement is sent in
return, there is no HTML content.

The push string of the GET request is made up from input parameters defined in the table below.

Input Parameters
id=xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx

A 32-character string used as a site identifier. This unique string is generated by the web
site and stored in the XML configuration file to be used by the client device initiating the
data push.

regX=Y
Defines the register number (X) and value for the register, (Y). Data reported in a cyclical
basis is reported in this format. Register values are 32-bit values; signed or unsigned based
on the configuration XML. Registers greater than 1000 are in IEEE 754 floating point format.

eventX=Y

Defines a threshold rule that has changed state. The Threshold rule is indicated by X and
the time/date and value of the Threshold rules is Y. The “Y” format is <Date><Time>, A, B.
Date format is MM/DD/YYYY - Time format is HH:MM:SS –‘ A’ is the Threshold rule number
- ‘B’ is “T” or “F” indicating whether the rule was evaluated as true or false. The space
between the date and time will be URL encoded as “%20”

Additionally, if the client device is so configured (verbose mode) additional information will
be included in the format:

<date><time>,A,B,<name>,C,D,E,F Where <name> is the name of the threshold rule, C
is the register number tested, D is the data in that register, E describes the test type (GT,
LT, etc.) and F is the test threshold value the register value is compared against.

flags=XXXXX

A bit map indicating the present status of threshold events. If there is no threshold rules
defined, this tag is omitted. Otherwise, the string of digits is equal in length to the number
of rules, with 0 indicating the rule is inactive and 1 indicating the rule is active. This status
is reported as part of every periodic log along with the register data (if any registers have
been selected for reporting)

pkt=yyyymmddhhmmss Defines the packet time stamp. Year, month,day,hour,min,sec (UTC time)

GET Request
The GET request is the main method for pushing data at a periodic rate from the client device to the web
server. In the acknowledgment of the GET request, further operations can be defined for the client
device. The acknowledgment data from the GET request must always include the site ID string. See
Messages to the Remote device for more information. For example, the acknowledgment might include
a new XML configuration file or tell the device to reset. There may be multiple GET requests if the
amount of register information exceeds 100 registers.

Event-driven pushes are created by Threshold Rules defined in the device. They create immediate data
for the webserver to consume. Below is an example of a Cyclical Push and an Event-driven push.

Example: Cyclical Push
From device to webserver:

GET /push.aspx?id=505678ed-4ee4-4034-b62c-
8bad456fae55&pkt=20131205153418&flags=000110000100100®1=31032®3=48®4=0®5=4&re
g6=0®7=4®8=0®10=0®15=0®23=0®24=0®32=0®36=0®37=0®52=0®53
=0®61=0®80=65535®81=65535®82=65535®83=65535®84=65535®85=65535®9

DXM Controller Protocol

 page 5

0=6868®91=59648®92=51272®93=960®94=524®95=39136®96=2®97=22328®9
8=0®99=51213

The basic acknowledgement from the web server to the DXM controller is in HTML format.

<html><head><title>HTTP Push Ack</title></head><body>id=505678ed-4ee4-4034-b62c-
8bad456fae55</body></html>

Example: Event-driven Push
GET /push.aspx?id=e89b06c4-b921-46aa-b7e1-7a329be3e16c&pkt=20140404152316&lat=45.019531,0&
lon=-93.480309,0&flags=1&event0=20140404152316,T,ErrorCondition,1,21,gt,0.000000

The GET command is followed by the website page to push to: “/push.aspx”. This is the default for the
Sensonix website. After the “?” delimiter the site id is defined.

The ampersand (&) is used as the delimiter for input parameters.

Also, part of the GET input parameters include the initial parameters. The first GET message after a
device reset/reboot includes input parameters that show information about the client device.

lat GPS latitude reading, no GPS entry will be shown as ‘NOGPS’

lon GPS longitude reading

mod Device model number

ser Device serial number

fwv Firmware version

ipaddr Ethernet IP address assigned to the device or Cellular IP address assigned from the network

maddr Ethernet MAC address or cellular MAC address

xmlgid XML GUI ID – uniquely identifies the XML file on the device. This can be compared to the XML file
loaded on the web server for consistency

csq Cellular signal quality, 1-30 logarithmic scale followed by the BER (bit error rate). A 99 indicates no
data.

cnum Cellular phone number: xxxyyyzzzz

meid The cellular Mobile Equipment IDentifier is a globally unique number identifying a physical piece of
CDMA mobile equipment.

Example: Initial Push
GET /push.aspx?id=505678ed-4ee4-4034-b62c-
8bad456fae55&pkt=20131206142431&lat=NOGPS&lon=NOGPS&mod=000000&ser=000000&fwv=v0.0.9
8&ipaddr=10.10.82.165&maddr=M:00:23:d9:ff:00:10&flags=000110000100100®1=31028®3=48&re
g4=0®5=4®6=0®7=4®8=0®10=0®15=0®23=0®24=0®32=0®36=0®37=0
®52=0®53=0®61=0®80=65535®81=65535®82=65535®83=65535®84=65535®
85=65535®90=6868®91=58176®92=51271®93=56896®94=528®95=6992®96=2&re
g97=11359®98=0®99=61213

Example: Initial Push (cellular)
id=b06c4395-ff3c-4019-a7f8-
f3dd90bcec1e&pkt=20150227204324&lat=0.000000,0&lon=0.000000,0&csq=15,99&cnum=7342047391&
meid=A1000032BD4942&mod=000000&ser=000000&fwv=v0.02.85&ipaddr=192.168.0.1&maddr=M:00:2

DXM Controller Protocol

 page 6

3:d9:ff:00:6d®1=959®2=500®3=1540®4=903®5=502®6=1542®7=992®8=494&re
g9=1530®10=970®11=498®12=1538

POST Request
Use POST requests for file transfers or when there is stored data that needs to be sent to the web
server. Stored data is created when the logging rate is faster than the push rate to the web server, or if
the connection to the web server is not available.

The POST requests are formatted in a XML style using start and end tags. The acknowledgment
message for the POST request is just like the GET request: the webserver must return the id string in
HTML format.

<html><head><title>HTTP Push Ack</title></head><body>id=505678ed-4ee4-4034-b62c-
8bad456fae55</body></html>

<httplog> Outer most tag defining entire data structure

<id> Similar to the GET input parameter ‘id’ – defines the 32-character site id created by the website and
stored in the XML configuration file on the device.

<st> Send time stamp of the file, YYYYMMDDHHMMSS format.

<log> XML tag for register data, including pkt (packet time stamp), flags (threshold rule status) and reg
(register number & data)

<miss> XML tag for register data that has missed the first attempt at transmitting to the web server.

Device POST request:

<httplog>
<id>505678ed-4ee4-4034-b62c-8bad456fae55</id>
<st>20131205153420</st>

<log>pkt=20131205152519&flags=000110000100100®1=31028®3=48®4=0®5=4®6=0®
7=4®8=0®10=0®15=0®23=0®24=0®32=0®36=0®37=0®52=0®53=0®61
=0®80=65535®81=65535®83=65535®8</log>
<log>pkt=20131205152618&flags=000110000100100®1=31030®3=48®4=0®5=4®6=0®
7=4®8=0®10=0®15=0®23=0®24=0®32=0®36=0®37=0®52=0®53=0®61
=0®80=65535®81=65535®83=65535®8</log>
</httplog>

Acknowledgment from web server in HTML format:

 <html><head><title>HTTP Push Ack</title></head><body>id=505678ed-4ee4-4034-b62c-
8bad456fae55</body></html>

POST example:
This example shows two time-stamped register groups encapsulated in the <log> tag. Each group is a
result of a user defined polling time.

The 'id' string calls out the site ID string, 'st' calls out the send time stamp (not the log time of the
registers). The acknowledgment from the web server is the just the 'id' string.

Device POST request:

DXM Controller Protocol

 page 7

<httplog>
<id>505678ed-4ee4-4034-b62c-8bad456fae55</id>
<st>20131205153420</st>

<log>pkt=20131205152519&flags=000110000100100®1=31028®3=48®4=0®5=4®6=0®
7=4®8=0®10=0®15=0®23=0®24=0®32=0®36=0®37=0®52=0®53=0®61
=0®80=65535®81=65535®82=65535®83=65535®8</log>
<log>pkt=20131205152618&flags=000110000100100®1=31030®3=48®4=0®5=4®6=0®
7=4®8=0®10=0®15=0®23=0®24=0®32=0®36=0®37=0®52=0®53=0®61
=0®80=65535®81=65535®82=65535®83=65535®8</log>
</httplog>

Authentication
A username and password will be sent when logging into the webserver if the user defines the DXM
Controller to use authentication. See the DXM Configuration Tool documentation to set up the
authentication.

The username and password authentication use the facilities of the HTTP protocol. The credentials need
to be defined in the DXM Controller and at the web server. The username and password are not stored
in the XML configuration file but in the DXM Controller’s flash memory. The XML configuration does
need to specify the requirement to send authentication.

Example:
Authorization: Basic TXJ1ZTpUZW1wcGFzczE=\r\n

Messages to the Remote Device
tod At the end of the acknowledgement message from a GET request, a “time of day” can be included

from the webserver to update the device time. The date is in month-day-year format.

Example: tod=12-12-2013-19:20:30

configure In the acknowledgement from a GET request the ‘configure’ message indicates to the device that a
XML configuration file is waiting to be downloaded. The full file path must not exceed 50
characters.

For example, this path and filename is 25 characters long: configure=/RSP/274870B/WLConfig.xml

regX=Y
Defines the register number (X) and value for the register, (Y). Data sent to the unit will be
immediately updated.

Example: reg5=2

dif
Down Load File. In the acknowledgement from a GET request, the 'dlf' message indicates to the
device that a file is waiting to be downloaded. The full path must not exceed 50 characters.

For example - dlf=/RSP/D009EE9/MyFile.sb

clear
Erases the saved HTTP log files. Typically, not required for normal operation.

Example: clear=1

reboot
This message will reboot the DXM controller.

Example: reboot=x

pwd1
Changes the root password for API access to the file system.

Example: pwd1=”MyPassword1”

pwd2 Changes the LCD display password for access to the LCD menu items.

DXM Controller Protocol

 page 8

Example: pwd2=”1234”

dxmfw
Upload firmware file for boot loading the processor board. Uploading firmware files require the SD
card for storage.

Example: dxmfw=/RSP/D009EE9/MyFile.bin

iofw
Upload firmware file for boot loading the I/O board. Uploading firmware files require the SD card for
storage.

Example: Iofw=/RSP/D009EE9/MyFile.bin

ismfw
Upload firmware file for boot loading the ISM radio. Uploading firmware files require the SD card for
storage.

Example: ismfw=/RSP/D009EE9/MyFile.bin

lcdfw
Upload firmware file for boot loading the LCD display board. Uploading firmware files require the
SD card for storage.

Example: lcdfw=/RSP/D009EE9/MyFile.bin

Messages can be sent to the remote device using the HTTP acknowledgement message for the normal
GET request. After the remote device decodes the acknowledgement message, the device sends
another GET request to start requested operation, if needed.

A POST message acknowledgment should only contain the site id string. Server control messages
should be put in the GET message acknowledgment.

HTTP acknowledgement messages should be a single line; no newline characters in HTML format. See
the examples below for the proper format.

A standard HTTP acknowledgment message shows the site id with no further action required. (No new
line characters)

<html><head><title>HTTP Push Ack</title></head><body>id=1bd7ed04-aae8-42f4-a618-
56a2b8d03ad2</body></html>

This example shows an acknowledgement message to update the time on the device. (UTC time) (HTML
formatting removed for clarity)

id=1bd7ed04-aae8-42f4-a618-56a2b8d03ad2&tod=12-12-2013-19:20:30

Acknowledgement message content from the web server indicating to get a new XML configuration file.
The full file path must not exceed 50 characters. For example this path is 45 characters long: (HTML
formatting removed for clarity)

id=1bd7ed04-aae8-42f4-a618-56a2b8d03ad2&configure=/Xml/5d66f92c-8658-4a9b-8887-
fb7ab669aa0e.xml

The follow-up GET request from the device that starts the XML configuration file transfer.

GET /Xml/5d66f92c-8658-4a9b-8887-fb7ab669aa0e.xml

The HTTP GET request in the following example pushes the cyclical data up to the webserver. The
acknowledgement to the GET request contains updates to two registers: 6 and 9. Both the GET
message and the acknowledgement start with the site ID string. (HTML formatting in the
acknowledgement message removed for clarity)

GET /push.aspx?id=b9f368bf-f205-4be0-b602-3ecd09bf426c&
pkt=20140418202059®1=1885®2=493®3=2181®4=485®5=1®6=0®8=0®9=0®
11=0®12=0®13=0®14=0®15=0®16=0®17=3®18=5492®19=3®20=64404

DXM Controller Protocol

 page 9

id=b9f368bf-f205-4be0-b602-3ecd09bf426c®6=1®9=1

To update output registers immediately, the cellular method is an email/text message to the phone
number of the device. When an email is sent to the device (blank contents), the device sends cyclical
data to the webserver, and the webserver includes the register updates in the HTTP acknowledgement.

Example:
Webserver sends an email to the appropriate phone number of the device:

To: 6127239817@vtext.com
Subject: Push
Body: Push

Register update from the web:

id=604f0807-a067-437a-a26b-064a319240da®14=1

If Ethernet connected, create a response by sending a GET request to ‘triggerpush.htm’, port 80 on the
devices’ internal webserver. Only an acknowledgement is sent in return, there is no HTML content.

DXM Controller File Transfer from Webserver
DXM Controllers defined to have device-initiated communications require interactions with the DXM
Controller to be initiated in the acknowledgment of a GET message. (The DXM Controller is the client,
and the website is the server). File transfers from a webserver to a DXM Controller start with the same
mechanism; the webserver indicates to the DXM Controller that there is a file waiting through the
acknowledgment from the GET message.

Configuration File Transfer from Webserver
Updating a configuration file to the DXM Controller is queued by the webserver waiting for the next DXM
Controller push. After a push message is received by the webserver, the file transfer request is sent
using the acknowledgment message. The process steps are shown below. The configuration file is
stored in the DXM Controller’s local data flash. If multiple file operations are required, only one should be
done at a time.

Standard cyclical push message from the DXM Controller to the webserver:

GET /push.aspx?id=0c2a907a-2014-42b6-820d-a7115af8d4f5&pkt=20170302144340®0=-1

Webserver acknowledgement to the GET request includes a request to get a new configuration file. The
HTML format acknowledge includes key word configure: configure= ‘path’/WLConfig.xml.
Configuration file loads using HTTP do not require the file name to be WLConfig.xml. Configuration file
loads using API require the file name to be WLConfig.xml.

<html><head><title>HTTP Push Ack</title></head><body>id=0c2a907a-2014-42b6-820d-
a7115af8d4f5&configure=/RSP/D009EE9/WLConfig.xml</body></html>

After the DXM Controller decodes the request to get a new configuration file, a follow up GET request is
sent by the DXM Controller to start the file transfer.

GET /RSP/D009EE9/WLConfig.xml

The server begins the transfer by putting the XML configuration file into TCP data payloads. (Wireshark
messages are shown)

DXM Controller Protocol

 page 10

TCP segment data (1380 bytes)
TCP segment data (1380 bytes)
TCP segment data (1380 bytes)
TCP segment data (1380 bytes)
TCP segment data (1380 bytes)
TCP segment data (1380 bytes)
TCP segment data (1380 bytes)
TCP segment data (858 bytes)
[8 Reassembled TCP Segments (10518 bytes): #2338(1380), #2340(1380), #2342(1380), #2344(1380),
#2346(1380), #2348(1380), #2350(1380), #2352(858)]

After the configuration file is loaded and verified, it will reboot the DXM Controller to use the new
configuration file.

ScriptBasic File Transfer from Webserver
A ScriptBasic file transfer is similar to a configuration file transfer except that the filename is the unique
filename for the ScriptBasic program file. Any file transfers that are not configuration files are stored in
the root directory on the internal SD card.

The file transfer mechanism starts with the next push message received by the webserver from the DXM
Controller.

GET /push.aspx?id=0c2a907a-2014-42b6-820d-a7115af8d4f5&pkt=20170302152500®0=-1

In the acknowledgment message to the GET from the DXM Controller, the webserver puts the request
for the DXM Controller to get the ScriptBasic file. (HTML format)

<html><head><title>HTTP Push Ack</title></head><body>id=0c2a907a-2014-42b6-820d-
a7115af8d4f5&dlf=/RSP/D009EE9/MarkTest.sb</body></html>

The DXM Controller creates a new GET message to the webserver to start the file transfer.
GET /RSP/D009EE9/MarkTest.sb

The server begins sending the file to the DXM Controller.
TCP segment data (1380 bytes)
TCP segment data (588 bytes)
[2 Reassembled TCP Segments (1968 bytes): #1162(1380), #1163(588)]

The DXM Controller is not rebooted after a ScriptBasic file download.

If the XML file verifies correctly, the DXM Controller reboots then attempt to load the new XML file. If the
XML file is loaded correctly, the DXM Controller sends a GET message back to the webserver. The
payload is called an initialization packet because it includes Meta data from the Controller.

• lat (latitude)
• lon (longitude)
• mod (model number)
• ser (serial number)
• fwv (firmware version)
• ipaddr (ip address)
• maddr (mac address)

GET /push.aspx?id=b3ce7448-b38b-4ea7-b994-
17162a779eac&pkt=20161111183709&lat=0.000000,0&lon=0.000000,0&mod=000000&ser=000000&fwv=v
1.00.00&ipaddr=10.10.82.132&maddr=M:00:23:d9:ff:02:27®1=0®6=0®8=0

DXM Controller Protocol

 page 11

Transfers on cellular will have more metadata in the init packet about the cellular modem and
connection. Some metadata is not available depending upon the cellular modem type.

• csq (cellular signal strength)
• cnum (cellular phone number)
• cfw (cellular modem firmware)
• meid (mobile equipment identifier)

DXM Controller Protocol

 page 12

Host-Initiated Protocol
The host-initiated protocol allows a host system to send commands directly to the DXM Controller. The
commands include the ability to access local Modbus registers, remote Modbus registers, RTC data, IP
settings, and file system functions. The DXM controller can also be forced to immediately push data and
forced to be reset

The DXM API commands are used from a host system to interact with the DXM Controller. When using
a cellular connection the carrier must provide a fixed IP address for the DXM controller to create a virtual
point to point private network by which to communicate. The API commands are simple ASCII text
strings sent from a host to the DXM controller using a TCP packet on port 8844.

Basic command structure is started by the letters “CMD” immediately followed by four numeric numbers
that define the function, for example CMD0001. The return response to a command will have a similar
seven-character format, RSP0001.

Local registers 1-900 are 32-bit integer values. Accessing these registers using the API commands
will access all 32-bits. Accessing these registers via Modbus will only use the lower 16-bits.

Local Registers 1001-1900 are floating point registers in IEEE 754 format. Accessing these registers
using Modbus requires the host system to read two registers to form one floating point value (registers
1001, 1002 form one value). Accessing these registers with the API commands requires the host to
request only the first Modbus register. Reading 1001 returns the concatenated value from registers 1001
and 1002. Reading two floating point registers starting at register 1001 results in two 32-bit values
returned, Local Registers 1001-1002, 1003-1004.

Following the fixed, seven-character command code is a series of comma separated parameters for the
command code. There can be a space as a delimiter between the command code and the parameters,
but it is not required.

The common parameter definitions are:

StartReg – Starting address of the first Modbus register to read, 1 - 65535
RegCount – The number of Modbus registers to read, 1 - 256
SlaveID - The slave ID defines the Modbus Slave ID for remote register access. For Local register access,

set this parameter to zero.
Modbus CMD – A parameter for remote registers read/write functions to describe the Modbus command

that will be used to access the data.
0 = Holding Register
3 = Coil
4 = Discrete Input
5 = Input Register
6 = Single Coil
7 = Single Register

Timeout –The timeout parameter (ms) defines the maximum of time the controller waits for a reply message
from a remote device. The timeout parameter is for remote register access only. Leave at zero to apply
the default timeout parameter controlled by the configuration tool.

CSV Data – Flexible length comma separated data fields

DXM Controller Protocol

 page 13

Read Local Register
This command reads one or more local registers of the DXM controller. The response includes the
starting register followed by the read data. The parameters are shown below. Set the Slave ID, Modbus
CMD, and Timeout fields to zero.

CMD0001 StartReg, RegCount, Slave ID, Modbus CMD, Timeout
RSP0001 StartReg, CSV Data

Example: Read 10 local registers in the DXM controller starting at address 5. The response includes the
starting address 5 and the read data.

CMD0001 5,10,0,0,0
RSP0001 5,1111,2222,3333,4444,5555,6666,7777,8888,9999,1010

Write Local Register
This command writes one or more local registers of the DXM controller with the supplied data. The
response is RSP0002. Set the Slave ID, Modbus CMD, and Timeout fields to zero.

CMD0002 StartReg, RegCount, SlaveID, Modbus CMD, Timeout, CSV data
RSP0002

Example: Write 5 local registers in the DXM controller starting at address 25. The response is only an
acknowledge, RSP0002

CMD0002 25,5,0,0,0,1111,2222,3333,4444,5555
RSP0002

Read Remote Register
This command reads one or more remote Modbus registers. The Modbus slave device can be an
internal DXM controller device or a device connected to the external RS485 bus. The response includes
the starting register followed by the read data. The parameters are shown below. Set the Timeout field to
zero.

CMD0003 StartReg, RegCount, SlaveID, Modbus CMD, Timeout
RSP0003 StartReg, CSV Data

Example: Read 10 Modbus registers from the I/O board (Slave ID 200) on the DXM controller starting at
address 1. The response includes the starting address 1 and the read data.

CMD0003 1,10,200,0,0
RSP0003 1,1111,2222,3333,4444,5555,6666,7777,8888,9999,1010

Write Remote Register
This command writes one or more remote Modbus registers. The Modbus slave device can be an
internal DXM controller device or a Modbus slave device connected to the external RS485 bus. The
response is RSP0004. The parameters are shown below. Set the Timeout field to zero.

CMD0004 StartReg, RegCount, SlaveID, Modbus CMD, Timeout, CSV data
RSP0004

Example: Write 5 Modbus registers to an externally connected Modbus slave device, slave ID 11,
starting at address 25. The response is only an acknowledge, RSP0004

DXM Controller Protocol

 page 14

CMD0004 25,5,11,0,0,1111,2222,3333,4444,5555
RSP0004

Invoke Register Push
Sending this command causes the device to immediately push data to the defined IP address. Mobile
initiated data transfers are accomplished with a HTTP GET or POST.

Example: Force an immediate push from the DMX Controller.

CMD0006
RSP0006

Clear Http.log File
Sending this command erases the Http.log file stored in the root directory of the SD card. The Http.log
file accumulates all missed push messages to a webserver. If the DXM Controller was disconnected
from the webserver for any length of time, it is a good practice to delete this file if the data has no value.

Example: Erase the Http.log

CMD0008
RSP0008

Get Default IP
This command reads the IP address associated to the device.

CMD0016
RSP0016 IP Address

Example: Read the IP address. The response includes the IP address.

CMD0016
RSP0016192.168.0.1

Get Default Subnet
This command reads the subnet mask associated to the device.

CMD0017
RSP0017 subnet mask

Example: Read the subnet mask. The response includes the subnet mask setting.

CMD0017
RSP0017255.255.254.0

Get Default Gateway
This command reads the gateway setting associated to the device.

CMD0018
RSP0018 gateway

Example: Read the gateway. The response includes the gateway IP address setting.

DXM Controller Protocol

 page 15

CMD0018
RSP0018192.168.0.10

Get Modbus SLID
This command reads the Modbus Slave address of the DXM Controller. The Modbus Slave address is
used when a host communicates with the DXM Controller using the secondary Modbus Slave RS485
port.

Example: Read the DXM Controller Modbus Slave ID; returns a value of 24.

CMD0028
RSP002824

Set RTC
Set the real time clock in the DXM Controller. The time is UTC.

CMD0100 Year,Month,Day,Hour,Minute,Second
RSP0100

Example: Set the real time clock to 2014/07/24 15:23:00

CMD0100 2014,7,24,15,23,0
RSP0100

Get RTC
Read the real time clock in the DXM Controller. The time is UTC.

CMD0102
RSP0102 timestamp

Example: Read the DXM Controller time.

CMD0102
RSP0102 2014,7,24,15,23,0

Get Firmware version
Reads the firmware version of the DXM processor board using this API command.

Example: Read the DXM Controller firmware version; returns a value of 24.

CMD0103
RSP0103v0.04.52,fw182124

Get MAC Address
This command reads the MAC address on the device.

CMD0112
RSP0112 MAC address

Example: Read the MAC address. The response includes the MAC address of the device.

CMD0112

DXM Controller Protocol

 page 16

RSP011200:23:d9:ff:00:11

Get Model Number
This command reads the model number on to the device.

CMD0113
RSP0113 model number

Example: Read the model number. The response includes the factory model number of the device.
(Example: 178325)

CMD0113
RSP0113178325

Get Serial Number
This command reads the device serial number on the device.

CMD0114
RSP0114

Example: Read the serial number. The response includes the device serial number of controller.

CMD0114
RSP0114123456

Reset Device
Send a reset command to the DXM Controller. A response is not returned.

CMD0200

Cellular Provisioning
The CDMA cellular modem must be provisioned on the wireless network before it can be used by the
DXM Controller. After a wireless plan is attached to the MEID of the modem, the cellular modem can be
provisioned using the DXM LCD display menu system or by sending this API command.

Example: Start a provisioning process with the Cellular modem. This expects the cellular modem to be
installed and a wireless plan in place. The DXM Controller responds immediately, but the provisioning
process will take a few minutes to complete with the wireless carrier.

CMD0202
RSP0202

Push Webserver Page
Set the Webserver parameter Page using this API command. The next reboot cycle loads the Page
parameter setting from the XML configuration file.

Example: Change the Webserver Page parameter.

CMD0205 /push.aspx
RSP0205

DXM Controller Protocol

 page 17

Push Webserver Server/IP
Set the Webserver parameter Server/IP using this API command. The next reboot cycle loads the
Server/IP parameter setting from the XML configuration file.

Example: Change the Webserver Server/IP parameter.

CMD0206 demopush.sensonix.net
RSP0206

Push Webserver Host Header
Set the Webserver parameter Host Header using this API command. The next reboot cycle load the Host
Header parameter setting from the XML configuration file.

Example: Change the Webserver Host Header parameter.

CMD0207 MyHostHeader
RSP0207

Push Webserver Site ID
Set the Webserver parameter Site ID using this API command. The next reboot cycle loads the Site ID
parameter setting from the XML configuration file.

Example: Change the Webserver Site ID parameter.

CMD0208 b677648d-645d-43cf-9d17-7b74764b0901
RSP0208

File Transfer
The file content is transferred in normal text like is normally found in the file itself. The exception to this is
the newline characters (carriage return, line feed), which must be substituted as follows:

CR: 0x0D substitute with 0x1E
LF: 0x0A substitute with 0x1F

These substitutions are made before any checksums or CRCs are calculated.

Send the device a CMD1003 at the beginning of a file transfer; this force closes any file that may have
been interrupted or left in a bad state.

The process for transferring file consists of sending the ‘Open File’ command, followed by a series of
‘Send Data’ commands, and finally a ‘Close File’ command

Possible API responses that can occur on any command:

UNSUPPORTED
API_BAD_COMMAND
API_BAD_SYNTAX
QFULL
IPC_PARAMS

DXM Controller Protocol

 page 18

API FTP Begin (Open File Command)
This command requests a file to transfer between the host system and the DXM controller; similar to an
‘Open File’ command. Required parameters include filename, read or write (0/1), file size in bytes and
control flags. When writing an XML configuration file, the filename MUST always be "WLConfig.xml".

CMD1001 filename, r/w, file size, flags
RSP1001 result

Filename = full filename of the file to transfer
R/W = read flag = 0; write flag = 1
File size = file size in bytes
Flags = normally zero, specifying a 1 will show diagnostic messages on the console

Possible responses, prefixed by RSP1001:
OK (or blank)
API_FILE_ALREADY_OPEN
API_NO_MEMORY
API_INVALID_FILESIZE
API_NO_FILE

Common error responses would be API_NO_FILE if the file cannot be found or API_NO_MEMORY if the
file specified is too large to fit into available memory.

Example: Open the file to write, WLConfig.xml; byte length of the file is 4011. A successful command
returns RSP1001

CMD1001 WLConfig.xml,1,4011,0
RSP1001

API FTP Data (Send / Deliver Command)
This command transfers a data packet between the host system and the DXM controller. The maximum
data packet size is 512 bytes. The packet number parameter facilitates multiple data packets to form a
complete file. Required parameters include Length, CRC, Packet number, and Data. The parameters
vary between a write operation and a read operation.

Write:
CMD1002 length, CRC, packet number, data
RSP1002

Length = fragment length, maximum fragment length is 512 bytes
CRC = Checksum (Cyclic Redundancy Check), follows Modbus CRC method.
Packet Number = packet number for this fragment.
Data = Fragment data from 1 to 512 bytes of ASCII data.

Possible responses, prefixed by RSP1002:

API_BAD_DATA
API_NO_PAYLOAD
API_PARAM_ERROR
API_BAD_SEQUENCE

Read:
CMD1002 packet number

DXM Controller Protocol

 page 19

RSP1002 packet number, CRC, data

CRC = Checksum (Cyclic Redundancy Check), follows Modbus CRC method.
Packet Number = the file content is delivered in packets of 512 bytes, which are normally read sequentially,
though reading in order is not required.
Data = Fragment data from 1 to 512 bytes of ASCII data.

Possible responses, prefixed by RSP1002:

API_BAD_DATA
API_NO_PAYLOAD
API_PARAM_ERROR
API_BAD_SEQUENCE

Example: Send Data Command (write) (note the last two characters are the substitutions for carriage
return/line feed):

CMD1002 43,7947,1,<?xml version="1.0" encoding="us-ascii"?>-

Example: Send Data Command (read) (note the last two characters are the substitutions for carriage
return/line feed):

CMD1002,1
RSP1002512,2f31,<?xml version=”1.0” encoding="us-ascii"?>

When the end of the file has been reached:

RSP10020,ffff,EOF

API FTP End (Close File)

This command closes the file.

CMD1003
RSP1003

Possible responses, prefixed by RSP1003:

None
IPC_PARAMS

The IPC_PARAMS response is issued when the amount of transferred data does not match what was
specified in the ‘Open File’ command. Also, intentionally mismatching the byte counts is a way to cancel
a transfer in progress.

Example: XML Configuration File Write

Writing an xml configuration file to the device consists of sending the API FTP Begin command, followed
by a series of API FTP Data commands, and finally an API FTP End command. The filename for the XML
configuration file MUST be "WLConfig.xml".

Close command, this forces a clean beginning, if a file transfer was left in a bad state prior to this
request.

1. Open WLConfig.xml for writing, 367 bytes
2. Send the data, 367 bytes, crc = 7947, packet number= 1, (replacing CR, LF)
3. Close.

CMD1003

DXM Controller Protocol

 page 20

CMD1001 WLConfig.xml,1,367,0
CMD1002 367,7947,1,<?xml version="1.0" encoding="us-ascii"?>-
CMD1003

Example: XML Configuration File Read
Reading an xml configuration file from the device consists of sending the API FTP Begin command,
followed by a series of API FTP Data (Deliver data) commands, and finally an API FTP End command.

Close command, this forces a clean beginning, if a file transfer was left in a bad state prior to this
request.

1. Open file WLConfig.xml for reading
2. Request first packet of data
3. Close file

CMD1003
CMD1001 WLConfig.xml,0,0,0
CMD1002 1
RSP1002512,2f31,<?xml version=”1.0” enc … (abbreviated)
When the end of the file has been reached:
RSP10020,ffff,EOF
CMD1003

File System List
This command reads the device file system and returns a delimited list of file names. The directory
parameter if omitted will give the directory listing of root.

CMD1004 <directory>
RSP1004 Delimited File List

Example: Read the file system list.

CMD1004
RSP1004 CmVmon.txt GPS_Read.sb TestScript.sb EOL

File System File Exists
This command reads the device file system and returns a zero/one if the file exists on the device.

CMD1005 filename
RSP1005 0 = doesn’t exist, 1 = exists

Example: Look to see if a file exists.

CMD1005 GPS_Read.sb
RSP1005 1

File System Delete
This command deletes a file in the file system.

CMD1006 filename

Example: Delete file.

DXM Controller Protocol

 page 21

CMD1006 GPS_Read.sb

File System Rename
This command renames a file in the file system.

CMD1007 currentfilename, newfilename

Example: Rename a file in the file system.

CMD1007 GPS_Read.sb

File System List Extended
This command reads the device file system and returns a CRLF delimited list of names with added
attributes, date modified, time modified fields are coma separated. The directory parameter if omitted
will give the listing of root files.

CMD1008

RSP1008 Attributes, Date Modified, Time Modified, Name

Attributes are of flag type with bitmask (note long filename is a combination of the low four bits)
0x01 : Read only
0x02 : Hidden
0x04 : System
0x08 : Volume label
0x0F : Long filename entry
0x10 : Directory
0x20 : File

Date:[15:9] [8:5] [4:0]

Bits15-9 : number of years since 1980
Bits 8-5 : non-zero month
Bits 4-0 : non-zero day of month

Time: [15:11] [10:5] [4:0]

15-11 : Hours since midnight (0-23)
10-5 : Minute of the hour (0-59)
4-0 : Second (0-59)

Example: 0000482c,00006745

Year : 0x24 = 36 + 1980 = 2016
Month : 0x1 = 1 = January
Day : 0x0c = 12 = 12th

Hour : 0x0c = 12 = noon
Minute : 0x3a = 58
Second : 0x05 = 5 = 12:58:05 pm

DXM Controller Protocol

 page 22

CMD1008

RSP1008
00000020,0000482c,00006745,TCS_Mgage.sb
00000020,00004839,00006425,CmVMon.txt
00000020,0000482b,000081ee,HttpLog.txt
00000010,00002800,00000000,_sxi
00000020,0000482c,00009f48,SystemPowerSavePoll.sb
00000020,0000482b,000083e3,MultiHop.sb
00000020,0000482b,0000805a,LogFile1.txt
00000020,0000482e,00008b1e,SystemPowerSavePoll2.sb
EOL

The following examples read subdirectories from the root directory. This example shows reading “_sxi”
directory and then reading “_sxi/20160111” directory

CMD1008 _sxi

RSP1008
00000010,0000482b,00008075,20160111
EOL

CMD1008 _sxi/20160111

RSP1008
00000020,00004796,00008b24,20160111160353.txt
00000020,0000482b,00008125,20160111161202.txt
EOL

DXM API Command Summary Table
Comma separated parameters

Function Command/
Response

Param 1 Param 2 Param 3 Param 4 Param 5 Param
6

Read local register CMD0001 StartReg RegCount 0 0 0

RSP0001 StartReg CSV data

Write local register CMD0002 StartReg RegCount 0 0 0 CSV
data

RSP0002 -

Read remote register CMD0003 StartReg RegCount SlaveID Modbus
CMD

Timeout

RSP0003 StartReg CSV data

Write remote register CMD0004 StartReg RegCount SlaveID Modbus
CMD

Timeout CSV
data

RSP0004 -

Invoke register push CMD0006

DXM Controller Protocol

 page 23

Comma separated parameters

Function Command/
Response

Param 1 Param 2 Param 3 Param 4 Param 5 Param
6

RSP0006

Clear Http.log File CMD0008

 RSP0008

Get Default IP CMD0016

 RSP0016 IP Address

Get default* subnet CMD0017

 RSP0017 Subnet Mask

Get default gateway CMD0018

 RSP0018 Gateway

Get Modbus SLID CMD0028

 RSP002824

Set RTC CMD0100 Year Month Day Hour Minute Second
RSP0100 -

Get RTC value CMD0102 -

RSP0102 Date/time

Get Firmware version CMD0103

 RSP0103 v0.04.52,fw182124

Get MAC address CMD0112 MAC

 RSP0112 MAC address

Get Model Number CMD0113

 RSP0113 Model Number

Get Serial Number CMD0114

 RSP0114 Serial Number

Reset Device CMD0200 -

Cellular Provisioning CMD0202

 RSP0202

Push Webserver Page CMD0205 /push.aspx

 RSP0205

Push Webserver Server/IP CMD0206 demopush.sensonix.net

 RSP0206

Push Webserver Host
Header

CMD0207 MyHostHeader

 RSP0207

DXM Controller Protocol

 page 24

Comma separated parameters

Function Command/
Response

Param 1 Param 2 Param 3 Param 4 Param 5 Param
6

Push Webserver Site ID CMD0208 b677648d-645d-43cf-
9d17-7b74764b0901

 RSP0208

API FTP Begin CMD1001 Filename R/W (0/1) File Size Flags

 RSP1001 Result

API FTP Data CMD1002 Length CRC Line
Number

Data

 RSP1002

API FTP End CMD1003

 RSP1003

FileSystem List CMD1004 Directory

 RSP1004 Delimited File List

FileSystem File Exists CMD1005 Filename

 RSP1005 0=Doesn’t exist

1 = Exists

FileSystem Delete CMD1006 Filename

 RSP1006

FileSystem Rename CMD1007 Current Filename New name

FileSystem List Attributes CMD1008 Directory

 RSP1008 Attributes Date
Modified

Time
Modified

API Command Example
The following example shows an API command to read a local register of the DMX controller. The first
TCP fragment shows the ASCII data sent to 10.10.82.179 on port 8844 (the API port). The data is
"CMD00011,1,0,0,16000" The API read command for a local register is CMD0001. The important data
following the API command is the starting register (1), followed by the number of registers (1). The data
after the number of registers is discarded. The next TCP fragment shows the response.

Source Destination Protocol Info

10.10.83.188 10.10.82.179 TCP 55245→8844 [PSH, ACK] Seq=1 Ack=1
Win=16445440 Len=22

Frame 26: 76 bytes on wire (608 bits), 76 bytes captured (608 bits)
Ethernet II, Src: 6c:62:6d:60:18:91 (6c:62:6d:60:18:91), Dst: 00:23:d9:ff:00:92 (00:23:d9:ff:00:92)
Internet Protocol Version 4, Src: 10.10.83.188 (10.10.83.188), Dst: 10.10.82.179 (10.10.82.179)
Transmission Control Protocol, Src Port: 55245 (55245), Dst Port: 8844 (8844), Seq: 1, Ack: 1, Len: 22
 Source Port: 55245 (55245)
 Destination Port: 8844 (8844)

DXM Controller Protocol

 page 25

 Data (22 bytes)

0000 43 4d 44 30 30 30 31 31 2c 31 2c 30 2c 30 2c 31 CMD00011,1,0,0,1
0010 36 30 30 30 0d 0a 6000..

The read data response is sent back with the API command RSP0001. After the command is the starting
address (1) followed by the data, 123456.

Source Destination Protocol Info

10.10.82.179 10.10.83.188 TCP 8844→55245 [PSH, ACK] Seq=1 Ack=23
Win=1478 Len=16

Frame 27: 70 bytes on wire (560 bits), 70 bytes captured (560 bits)
Ethernet II, Src: 00:23:d9:ff:00:92 (00:23:d9:ff:00:92), Dst: 6c:62:6d:60:18:91 (6c:62:6d:60:18:91)
Internet Protocol Version 4, Src: 10.10.82.179 (10.10.82.179), Dst: 10.10.83.188 (10.10.83.188)
Transmission Control Protocol, Src Port: 8844 (8844), Dst Port: 55245 (55245), Seq: 1, Ack: 23, Len: 16
 Source Port: 8844 (8844)
 Destination Port: 55245 (55245)
 Data (16 bytes)
0000 52 53 50 30 30 30 31 31 2c 31 32 33 34 35 36 2c RSP00011,123456,
 Data: 52535030303031312c3132333435362c

The following TCP fragment is an example of the API write command (CMD0002)and the response. The
API write command (CMD0002) is followed by the starting register address (1) and the number of
registers to write (10). The write data is 1111,2222,3333,4444,5555,6666,7777,8888,9999 and 1010. The
next TCP fragment shows the response. (RSP0002)

Source Destination Protocol Info

10.10.83.188 10.10.82.179 TCP 56402→8844 [PSH, ACK] Seq=1 Ack=1
Win=16445440 Len=74

Frame 234: 128 bytes on wire (1024 bits), 128 bytes captured (1024 bits)
Ethernet II, Src: 6c:62:6d:60:18:91 (6c:62:6d:60:18:91), Dst: 00:23:d9:ff:00:92 (00:23:d9:ff:00:92)
Internet Protocol Version 4, Src: 10.10.83.188 (10.10.83.188), Dst: 10.10.82.179 (10.10.82.179)
Transmission Control Protocol, Src Port: 56402 (56402), Dst Port: 8844 (8844), Seq: 1, Ack: 1, Len: 74
 Source Port: 56402 (56402)
 Destination Port: 8844 (8844)
Data (74 bytes)
0000 43 4d 44 30 30 30 32 31 2c 31 30 2c 30 2c 30 2c CMD00021,10,0,0,
0010 31 36 30 30 30 2c 31 31 31 31 2c 32 32 32 32 2c 16000,1111,2222,
0020 33 33 33 33 2c 34 34 34 34 2c 35 35 35 35 2c 36 3333,4444,5555,6
0030 36 36 36 2c 37 37 37 37 2c 38 38 38 38 2c 39 39 666,7777,8888,99
0040 39 39 2c 31 30 31 30 2c 0d 0a 99,1010,..

Source Destination Protocol Info

10.10.82.179 10.10.83.188 TCP 8844→56402 [PSH, ACK] Seq=1 Ack=75
Win=1426 Len=7

Frame 235: 61 bytes on wire (488 bits), 61 bytes captured (488 bits)
Ethernet II, Src: 00:23:d9:ff:00:92 (00:23:d9:ff:00:92), Dst: 6c:62:6d:60:18:91 (6c:62:6d:60:18:91)
Internet Protocol Version 4, Src: 10.10.82.179 (10.10.82.179), Dst: 10.10.83.188 (10.10.83.188)
Transmission Control Protocol, Src Port: 8844 (8844), Dst Port: 56402 (56402), Seq: 1, Ack: 75, Len: 7
 Source Port: 8844 (8844)

DXM Controller Protocol

 page 26

 Destination Port: 56402 (56402)
Data (7 bytes)

0000 52 53 50 30 30 30 32 RSP0002
 Data: 52535030303032

	Overview
	Device-Initiated Protocol
	Input Parameters
	GET Request
	Example: Cyclical Push
	Example: Event-driven Push
	Example: Initial Push
	Example: Initial Push (cellular)

	POST Request
	POST example:

	Authentication
	Example:

	Messages to the Remote Device
	Example:

	DXM Controller File Transfer from Webserver
	Configuration File Transfer from Webserver
	ScriptBasic File Transfer from Webserver

	Host-Initiated Protocol
	Read Local Register
	Write Local Register
	Read Remote Register
	Write Remote Register
	Invoke Register Push
	Clear Http.log File
	Get Default IP
	Get Default Subnet
	Get Default Gateway
	Get Modbus SLID
	Set RTC
	Get RTC
	Get Firmware version
	Get MAC Address
	Get Model Number
	Get Serial Number
	Reset Device
	Cellular Provisioning
	Push Webserver Page
	Push Webserver Server/IP
	Push Webserver Host Header
	Push Webserver Site ID
	File Transfer
	API FTP Begin (Open File Command)
	API FTP Data (Send / Deliver Command)
	API FTP End (Close File)
	Example: XML Configuration File Write
	Example: XML Configuration File Read

	File System List
	File System File Exists
	File System Delete
	File System Rename
	File System List Extended
	DXM API Command Summary Table
	API Command Example

