Inhaltsverzeichnis

1 Über dieses Dokument ... 4
1.1 Wichtig... Unbedingt lesen! .. 4
1.2 Verwendung der Warnhinweise ... 4
1.3 EU-Konformitätserklärung ... 4
2 Normen und Vorschriften .. 5
2.1 Geltende US-Normen .. 5
2.2 Geltende OSHA-Vorschriften .. 5
2.3 Internationale/europäische Normen ... 6
3 Einführung .. 7
3.1 Technische Merkmale .. 7
3.2 Funktionsmerkmale ... 7
3.3 Systembeschreibung ... 8
3.4 Geeignete Anwendungen und Einschränkungen ... 9
3.4.1 Beispiele: Geeignete Anwendungen .. 9
3.4.2 Beispiele: Ungeeignete Anwendungen .. 9
3.5 Steuerungszuverlässigkeit: Redundanz und Selbstüberwachung ... 10
3.6 Spezifikationen .. 10
3.6.1 Allgemeine Daten .. 10
3.6.2 Sender-Spezifikationen ... 11
3.6.3 Empfänger-Spezifikationen .. 11
3.6.4 Abmessungen ... 12
3.6.5 Endkappen-Montagewinkel .. 13
3.6.6 Mittlerer Zentriersinkel .. 13
4 Komponenten ... 14
4.1 Systemkomponenten ... 14
4.2 Standardmodelle für Sender und Empfänger (nicht kaskadierbar) mit 14 mm Auflösung ... 14
4.3 Standardmodelle für Sender und Empfänger (nicht kaskadierbar) mit 30 mm Auflösung ... 15
4.4 Anschlussleitungen ... 16
4.4.1 Einseitig vorkonfektionierte Anschlussleitungen (Maschinenanschluss, je ein Kabel für jeden Sender und Empfänger) 16
4.4.2 Beidseitig vorkonfektionierte (Sensor-)Anschlusskabel .. 17
4.4.3 Vorkonfektionierte Verteiler .. 18
4.4.4 Trennwandstecker ... 19
4.5 Dokumentation .. 19
5 Installationsanleitung ... 20
5.1 Installation und Ausrichtung ... 20
5.2 Überlegungen zur mechanischen Installation .. 20
5.2.1 Berechnung des Sicherheitsabstands (Mindestabstand) .. 20
5.2.2 Reduzierung oder Beseitigung von Hinterretungsfahrern .. 23
5.2.3 Reset-Schalterposition .. 24
5.2.4 Zusätzliche Schutzeinrichtungen .. 25
5.2.5 Ausrichtung von Sender und Empfänger .. 25
5.2.6 Benachbarte reflektierende Oberflächen .. 26
5.2.7 Verwendung von Umlenkspiegeln ... 27
5.2.8 Installation weiterer Systeme .. 28
5.3 Montage des Senders und Empfängers .. 29
5.4 Montage und mechanische Ausrichtung der Sensoren .. 31
5.5 Montage des Reset-Schalters .. 31
5.6 Verlegung der Anschlussleitungen .. 31
5.7 Elektrische Anschlüsse vor der Inbetriebnahme .. 32
5.7.1 Optionen für die Sendervorhängung .. 33
5.8 Überprüfung vor der erstmaligen Inbetriebnahme ... 33
5.8.1 Konfigurieren des Systems für die Inbetriebnahme ... 33
5.8.2 Erstmaliger Hochlauf .. 33
5.8.3 Optische Ausrichtung .. 34
5.8.4 Optische Ausrichtung bei Verwendung von Spiegeln .. 36
5.8.5 Reduzierte Auflösung/Flexible Ausblendung .. 36
5.8.6 Feste Ausblendung ... 37
5.8.7 Detektionsfunktionstest .. 38
5.9 Elektrische Anschlüsse an die überwachte Maschine .. 39
5.9.1 OSSD-Ausgangsanschlüsse .. 40
5.9.2 FSD-Anschlüsse .. 40
5.9.3 Primäre Steueranzeige der Maschine und EDM-Eingang .. 41
5.10 Hilfsausgang (Aux) .. 41
5.11 Externer Testeingang ... 44
5.12 Vorbereitung für den Systembetrieb .. 44
5.13 Sensor-Austauschbarkeit .. 44
5.14 Allgemeine Schaltpläne ... 45
6 Bedienungsanleitung .. 49
6.1 Sicherheitsprotokoll .. 49
6.2 Einstellungen zur Systemkonfiguration .. 49
6.2.1 Zugriff auf das Konfigurations-Bedienfeld ... 50
6.2.2 Invertiertes Display .. 51
6.2.3 Einstellung von Schalt- oder Verriegelungsausgängen .. 51
6.3 Reset-Verfahren .. 51
6.3.1 Manuelle Resets und Spernzustände .. 51
6.3.2 Rücksetzen des Empfängers ... 51
6.3.3 Zurücksetzen des Senders .. 52
6.4 Statusanzeigen ... 52
6.4.1 Statusanzeigen des Senders .. 53
7 Prüfroutinen ...59
 7.1 Zeitplan für Überprüfungen ..59
 7.2 Inbetriebnahmeprüfung ...59
 7.3 Tägliche Überprüfungsroutine/Überprüfungsroutine bei Schichtwechsel ...61
 7.4 Halbjährliche Überprüfung (alle sechs Monate) ..61

8 Kaskade ...62
 8.1 Überblick über Kaskaden ..62
 8.2 Systemkomponenten und Spezifikationen ..62
 8.2.1 Kaskadierbare Sender- und Empfängermodelle mit 14 mm Auflösung ...63
 8.2.2 Kaskadierbare Sender- und Empfängermodelle mit 30 mm Auflösung ...64
 8.3 Empfänger-Display ...65
 8.4 Ermitteln der Länge von Anschlusskabeln ...65
 8.5 Ansprechzeit für kaskadierte Lichtvorhänge ...67
 8.5.1 Individuelle Ansprechzeit und Sicherheitsabstand ..68
 8.5.2 Gesamtreaktionszeit und Sicherheitsabstand (Mindestabstand) ...68
 8.5.3 Kaskadeneinstellungen für kaskadierte Sensoren ..69
 8.6 Konfigurationseinstellungen für kaskadierten Betrieb ..70
 8.7 Not-Halt-Schalter und Sel-/Kabelzüge ..71
 8.8 Anforderungen an Schutzverriegelungen ...73
 8.8.1 Anforderungen an Schutzverriegelungen ...73
 8.8.2 Sicherheitsschalter mit Zwangsaufhebung ...74
 8.8.3 Uberwuchung von Sicherheitsschaltern mit Zwangsaufhebung in Reihenschaltung ..74

9 Fehlerbehebung ..77
 9.1 Fehlerbeseitigung und Sperrozustände ..77
 9.2 Behebung von Sperrzuständen ..77
 9.2.1 Reset von Sender und Empfänger ...77
 9.2.2 Erweiterte Diagnostik ...78
 9.2.3 Empfänger-Fehlercodes ..78
 9.2.4 Sender-Fehlercodes ..80
 9.3 Testmodus für 5-polige Sender ..80
 9.4 Elektrisches und optisches Rauschen ...81
 9.4.1 Auf Quellen für elektrisches Rauschen überprüfen. ..81
 9.4.2 Überprüfung von Quellen für optische Störsignale ..81

10 Zubehör ..82
 10.1 Interface-Module ..82
 10.2 Kontaktgeber ..82
 10.3 Sicherheitstechnik ..82
 10.4 Multing-Module ..82
 10.5 AC-Netzteile ...82
 10.6 Externer Reset-Schalter ..83
 10.7 Schutzlinien ...84
 10.8 Röhrenförmige Gehäuse ..84
 10.9 Montagegeständner der MSA-Bauform ...85
 10.10 Umlenkspiegler der MSA-Bauform ..85
 10.11 Umlenkspiegler der SSM-Bauform ..85
 10.12 Montagewinkel ...86
 10.13 Ausrichtungshilfen ..87
 10.14 EZ-LIGHT® für EZ-SCREEN® ..87

11 Kundendienst und Wartung ..89
 11.1 Ersatzteile ..89
 11.2 Reinigung ..89
 11.3 Garantieservice ..89
 11.4 Fabrikationsdatum ..89
 11.5 Entsorgung ..90
 11.6 Kontakt ...90
 11.7 Beschränkte Garantie von Banner Engineering Corp. ...90

12 Glossar ..91
1 Über dieses Dokument

1.1 Wichtig... Unbedingt lesen!

WARNUNG:
• Es liegt in der Verantwortung des Anwenders, diese Anweisungen zu befolgen.
• Wenn diese Aufgaben nicht befolgt werden, kann möglicherweise eine Gefahrsituation entstehen, die zu schweren oder tödlichen Verletzungen führen kann.
• Alle Anweisungen zu diesem Gerät sorgfältig durchzulesen, zu verstehen und zu beachten.
• Eine Risikobeurteilung durchzuführen, die die konkrete Maschinenischutzanwendung berücksichtigt. Informationen zur normgerechten Methodik sind ISO 12100 oder ANSI B11.0 zu entnehmen.
• Zu prüfen, ob das komplette Schutzsystem (einschließlich Ein- und Ausgangseräte und Steuerungen) sachgemäß konfiguriert und installiert ist, ob es funktionsfähig ist und wie beabsichtigt läuft.
• Nach Bedarf regelmäßig zu überprüfen, ob das gesamte Schutzsystem wie für die Anwendung beabsichtigt läuft.

1.2 Verwendung der Warnhinweise

Die Sicherheitshinweise und Erklärungen in diesem Dokument sind durch Warnsymbole gekennzeichnet und müssen für die sichere Verwendung des EZ-SCREEN 14/30 mm Sicherheits-Lichtvorhang beachtet werden. Bei Nichtbeachtung aller Sicherheits- und Warnhinweise ist die sichere Bedienung bzw. der sichere Betrieb nicht mehr unbedingt gewährleistet. Die folgenden Signalwörter und Warnsymbole werden wie folgt definiert:

<table>
<thead>
<tr>
<th>Signalwort</th>
<th>Definition</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNUNG</td>
<td>Warnhinweise vom Typ „Warnung“ beziehen sich auf potenzielle Gefahrensituationen, die, wenn sie nicht verhindert werden, zu schweren Verletzungen bis einschließlich zum Tod führen können.</td>
<td>![WARNUNG]</td>
</tr>
<tr>
<td>VORSICHT</td>
<td>Warnhinweise vom Typ „Vorsicht“ beziehen sich auf potenzielle Gefahrensituationen, die, sofern sie nicht verhindert werden, zu leichten bis mäßigen Verletzungen oder potenziellen Sachschäden führen können.</td>
<td>![VORSICHT]</td>
</tr>
</tbody>
</table>

Diese Hinweise sollen den Maschinenkonstrukteur und den Hersteller, den Endbenutzer und das Wartungspersonal darüber informieren, wie sie eine falsche Anwendung vermeiden und das EZ-SCREEN 14/30 mm Sicherheits-Lichtvorhang so anwenden, dass die diversen Anforderungen an Schutzanwendungen erfüllt werden. Es liegt in der Verantwortung der genannten Personen, diese Hinweise zu lesen und zu beachten.

1.3 EU-Konformitätserklärung

Banner Engineering Corp. erklärt hiermit, dass das Produkt EZ-SCREEN Sicherheits-Lichtvorhang die Bestimmungen der Maschinenrichtlinie 2006/42/EC sowie sämtliche wesentlichen Gesundheits- und Sicherheitsvorschriften erfüllt.

2 Normen und Vorschriften

Es folgt eine Liste mit Normen zu diesem Banner-Gerät; diese dient zur Information für Anwender dieses Geräts. Die Angabe dieser Normen bedeutet nicht, dass das Gerät jede Norm erfüllt. Die erfüllten Normen sind unter den Spezifikationen in diesem Handbuch aufgeführt.

2.1 Geltende US-Normen

<table>
<thead>
<tr>
<th>Normennummer</th>
<th>Name der Normen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI B11.0</td>
<td>Safety of Machinery, General Requirements, and Risk Assessment (Sicherheit von Maschinen, Allgemeine Anforderungen und Risikobewertung)</td>
</tr>
<tr>
<td>ANSI B11.1</td>
<td>Mechanical Power Presses (Mechanische Pressen)</td>
</tr>
<tr>
<td>ANSI B11.2</td>
<td>Hydraulic Power Presses (Hydraulische Pressen)</td>
</tr>
<tr>
<td>ANSI B11.3</td>
<td>Power Press Brakes (Bremsen von mechanischen Pressen)</td>
</tr>
<tr>
<td>ANSI B11.4</td>
<td>Shears (Abtrenner)</td>
</tr>
<tr>
<td>ANSI B11.5</td>
<td>Iron Workers (Stahlbauarbeiter)</td>
</tr>
<tr>
<td>ANSI B11.6</td>
<td>Lathes (Drehmaschinen)</td>
</tr>
<tr>
<td>ANSI B11.7</td>
<td>Cold Headers and Cold Formers (Kaltstaucher und Kaltumformer)</td>
</tr>
<tr>
<td>ANSI B11.8</td>
<td>Drilling, Milling, and Boring (Bohren, Mahlen und Fräsen)</td>
</tr>
<tr>
<td>ANSI B11.9</td>
<td>Grinding Machines (Schleifmaschinen)</td>
</tr>
<tr>
<td>ANSI B11.10</td>
<td>Metal Sawing Machines (Metallsägemaschinen)</td>
</tr>
<tr>
<td>ANSI B11.11</td>
<td>Gear Cutting Machines (Verzahnungs maschinen)</td>
</tr>
<tr>
<td>ANSI B11.12</td>
<td>Roll Forming and Roll Bending Machines (Rollenformungs- und Rollenbiegemaschinen)</td>
</tr>
<tr>
<td>ANSI B11.13</td>
<td>Single- and Multiple-Spindle Automatic Bar and Chucking Machines (Automatische Stab- und Futtermaschinen mit einer oder mehreren Spindeln)</td>
</tr>
<tr>
<td>ANSI B11.14</td>
<td>Coil Slitting Machines (Spulenlängsschneidemaschinen)</td>
</tr>
<tr>
<td>ANSI B11.15</td>
<td>Pipe, Tube, and Shape Bending Machines (Rohr-, Schlauch- und Formbiegemaschinen)</td>
</tr>
<tr>
<td>ANSI B11.16</td>
<td>Metal Powder Compacting Presses (Metal l pulver-Kompaktierungspressen)</td>
</tr>
<tr>
<td>ANSI B11.17</td>
<td>Horizontal Extrusion Presses (Horizontale Strangpressen)</td>
</tr>
<tr>
<td>ANSI B11.18</td>
<td>Machinery and Machine Systems for the Processing of Coiled Strip, Sheet, and Plate (Maschinen und Maschinenanlagen für die Verarbeitung von aufgerollen Streifen, Blättern und Platten)</td>
</tr>
<tr>
<td>ANSI B11.19</td>
<td>Performance Criteria for Safeguarding</td>
</tr>
<tr>
<td>ANSI B11.20</td>
<td>Manufacturing Systems (Fabrikationssysteme)</td>
</tr>
<tr>
<td>ANSI B11.21</td>
<td>Machine Tools Using Lasers (Maschinenwerkzeuge mit Lasern)</td>
</tr>
<tr>
<td>ANSI B11.22</td>
<td>Numerically Controlled Turning Machines (Digital gesteuerte Drehmaschinen)</td>
</tr>
<tr>
<td>ANSI B11.23</td>
<td>Machining Centers (Zentren für maschinelle Bearbeitung)</td>
</tr>
<tr>
<td>ANSI B11.24</td>
<td>Transfer Machines (Übertragungsmaschinen)</td>
</tr>
<tr>
<td>ANSI/RIA R15.06</td>
<td>Safety Requirements for Industrial Robots and Robot Systems (Sicherheitsanforderungen für Industrieroboter und Roboter-Systeme)</td>
</tr>
<tr>
<td>ANSI NFPA 79</td>
<td>Electrical Standard for Industrial Machinery (Elektrische Norm für Industriemaschinen)</td>
</tr>
<tr>
<td>ANSI/PMMI B155.1</td>
<td>Package Machinery and Packaging-Related Converting Machinery – Safety Requirements (Verpackungs maschinen und verpackungsbezogene Verarbeitungsmaschinen – Sicherheitsanforderungen)</td>
</tr>
</tbody>
</table>

2.2 Geltende OSHA-Vorschriften

Die genannten OSHA-Dokumente stammen aus folgenden Quellen: Code of Federal Regulations, Title 29, Teile 1900 bis 1910

- OSFA 29 CFR 1910.212: General Requirements for (Guarding of) All Machines (Allgemeine (Schutz-)Anforderungen für alle Maschinen)
- OSFA 29 CFR 1910.147: The Control of Hazardous Energy (lockout/tagout) (Kontrolle gefährlicher Energie (Lockout/Tagout))
2.3 Internationale/europäische Normen

EN ISO 12100: Sicherheit von Maschinen – Allgemeine Gestaltungsleitsätze – Risikobeurteilung und Risikoreduzierung
ISO 13857 Sicherheit von Maschinen - Sicherheitsabstände gegen das Erreichen von Gefährdungsbereichen mit den oberen und unteren Gliedmaßen
ISO 13850 (EN 418): Not-Ausschaltgeräte, Funktionelle Aspekte – Gestaltungsleitsätze
EN 574: Zweihandschaltungen – Funktionelle Aspekte – Gestaltungsleitsätze
IEC 62061: Sicherheit von Maschinen – Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer Steuerungssysteme
EN ISO 13849-1: Sicherheitsbezogene Teile von Steuerungen
ISO 13855 (EN 999): Sicherheit von Maschinen – Anordnung von Schutzeinrichtungen im Hinblick auf Annäherungsgeschwindigkeiten von Körperteilen
EN 60204-1: Elektrische Ausrüstung von Maschinen – Teil 1: Allgemeine Anforderungen
IEC 61496: Berührungslos wirkende Schutzeinrichtungen
IEC 60529: Schutzarten durch Gehäuse
IEC 60947-1: Niederspannungsschaltgeräte – Allgemeine Festlegungen
IEC 60947-5-1: Niederspannungsschaltgeräte – Steuergeräte und Schaltelemente; Elektromechanische Steuergeräte
IEC 60947-5-5: Niederspannungsschaltgeräte – Elektrisches Not-Aus Schaltgerät mit mechanischer Verriegelungsfunktion
IEC 61508: Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme
IEC 62046 Sicherheit von Maschinen – Anwendung von Schutzeinrichtungen zur Anwesenheitserkennung von Personen
3 Einführung

3.1 Technische Merkmale

- Eine optoelektronische Schutzvorrichtung
- Schafft einen Lichtvorhang aus synchronisierten, modulierten Infrarot-Lichtstrahlen; wählen Sie zwischen zwei Auflösungen und Größen in 150-mm- (6-in-) Schritten:
 - Modelle mit einer Auflösung von 14 mm (0,55 in) mit Schutzfeldern von 150 mm bis 1,8 m (6 in bis 71 in)
 - Modelle mit einer Auflösung von 30 mm (1,18 in) mit Schutzfeldern von 150 mm bis 2,4 m (6 in bis 94,5 in)
- Kompakte Bauform für kleinere Fertigungsmaschinen ausreichende Stabilität für große mechanische Pressen
- Standard- oder kaskadierbare Modelle verfügbar
- Optionale externe Testeingangsklemmen zur Simulierung eines „blockierten“ Zustands (bei einigen Senderausführungen erhältlich)
- Einfach konfigurierbare reduzierte Auflösung (flexible Ausblendung)
- Dreistelliges Display mit Diagnose-Informationen und Angabe der Anzahl blockierter Strahlen
- Zonenanzeigen zur Identifizierung blockierter Strahlen
- Für Steuerungszuverlässigkeit FMEA-getestet
- Empfänger-LEDs mit Anzeige von Systemstatus und Ausrichtung von Sender/Empfänger
- Weitgehende Unempfindlichkeit gegenüber elektromagnetischen und hochfrequenten Störungen, Umgebungslicht, Schweißblitzen und Blitzlicht
- Zweiteilige Konstruktion mit EDM (externe Geräteüberwachung)
- Optionaler Hilfsausgang zum Überwachen des OSSD-Zustands
- Ab Werk eingebrannte schwingungstolerante Sender- und Empfänger- schaltungen für Haltbarkeit und Zuverlässigkeit
- Bis zu vier Sender-Empfänger-Paare verschiedener Länge können kaskadiert werden (SLSC...-Ausführungen).
- Mit Sicherheits-SPS-Eingang kompatibel (gemäß OSSD-Spezifikationen)

3.2 Funktionsmerkmale

Die in diesem Handbuch beschriebenen Modelle des EZ-SCREEN 14/30 mm Sicherheits-Lichtvorhang aus dem Hause Banner sind mit den Standardmerkmalen ausgestattet:

- Reduzierte Auflösung (flexible Ausblendung) (siehe Reduzierte Auflösung/Flexible Ausblendung auf Seite 36)
- Schalt- oder Verriegelungsausgang (siehe Einstellung von Schalt- oder Verriegelungsausgängen auf Seite 51)
- Externe Geräteüberwachung (EDM) (siehe Externe Geräteüberwachung auf Seite 42)
- Hilfsausgang (siehe Hilfsausgang (Aux) auf Seite 43)
- Scancode (siehe Einstellungen zur Systemkonfiguration auf Seite 49)
- Feste Ausblendung (siehe Feste Ausblendung auf Seite 37)
- Invertiertes Display (siehe Invertiertes Display auf Seite 51)
- Kaskadiierung (verfügbar bei SLPC...-Modellen) (siehe Kaskade auf Seite 62)

3.3 Systembeschreibung

Anmerkung: In diesem Handbuch werden ein Sender, sein Empfänger und deren Verkabelung als „ein System“ bezeichnet.

Die Sender und Empfänger des EZ-SCREEN von Banner bieten einen redundanten, mit einer Mikroprozessor-Steuerung ausgestatteten optoelektronischen Einwegschranken-„Lichtvorhang“, bzw. „Sicherheits-Lichtvorhang“. EZ-SCREEN wird typischerweise für die Sicherung von Betriebspunkten eingesetzt und eignet sich für die Sicherung einer Vielzahl von Maschinen.

Der EZ-SCREEN ist ein zweiteiliges System aus einem Sender und einem Empfänger, aber ohne externes Steuergerät. Die externe Geräteüberwachungsfunktion (EDM) gewährleistet die von der Norm EN ISO 13849-1 vorgeschriebene Fehlererkennung der Kategorien 3 und 4 ohne Drittgerät, d. h. ohne Steuergerät oder „intelligentes“ (selbstüberwachendes) Sicherheitsmodul, wie es für Systeme ohne EDM erforderlich ist.

Die Sender des EZ-SCREEN haben eine Reihe synchronisierter Leuchtdioden (LEDs) für moduliertes Infrarotlicht (unsichtbar) in einem kompakten Metallgehäuse. Die Empfänger haben eine entsprechende Reihe synchronisierter Photodetektoren. Der von Sender und Empfänger erzeugte Lichtvorhang wird als Schutzfeld bezeichnet. Seine Breite und Höhe werden durch die Länge des Sensorpaars und den Abstand zwischen den Sensoren bestimmt. Die maximale Reichweite hängt von der Auflösung ab. Bei Verwendung von Eckspiegeln nimmt die Reichweite ab. Sender- und Empfängerpaare mit einer Auflösung von 14 mm (0,55 in) haben eine maximale Reichweite von 6 m (20 ft), und Paare mit einer Auflösung von 30 mm (1,18 in) haben eine maximale Reichweite von 18 m (60 ft).

Wenn bei normalem Betrieb ein Körperteil des Bedieners (oder irgendein lichtundurchlässiges Objekt) erfasst wird, das größer ist als ein zuvor festgelegter Querschnitt, schalten sich die Sicherheits-Transistorausgänge der Ausgangssignal-Schaltgeräte (OSSDs) AUS. Diese Sicherheitsausgänge sind an die Endschaltgeräte (FSDs) der überwachten Maschine angeschlossen, die die MPSEs (primären Steuerelemente der Maschine) steuern, welche ihrerseits sofort die Bewegung der überwachten Maschine anhalten.

Ein Hilfsausgang (Aux) kann verwendet werden, um Signale über den Zustand der OSSDs an ein Prozesssteuergerät zu übermitteln (siehe Externe Geräteüberwachung auf Seite 42).

Funktionen wie die Auswahl zwischen Schalt- und Verriegelungsausgang, Invertierung der Anzeige, Kaskadierung, feste Ausblendung, reduzierte Auflösung (bewegliche Ausblendung), Scancode-Auswahl und externe Geräteüberwachung sind in Technische Merkmale auf Seite 7 beschrieben. Ein Hilfsausgang (Aux) kann verwendet werden, um Signale über den Zustand der OSSDs an ein Prozesssteuergerät zu übermitteln. Alle Ausführungen benötigen eine Betriebsspannung von +24 V DC ±15 %.

Sender und Empfänger haben siebenteilige Diagnose-Displays und einzelne LEDs zur kontinuierlichen Anzeige von Betriebsstatus, Konfiguration und Fehlerzuständen.
3.4 Geeignete Anwendungen und Einschränkungen

WARNUNG: Lesen Sie vor Installation des Systems sorgfältig diesen Abschnitt durch

Es liegt in der alleinigen Verantwortung des Anwenders dafür zu sorgen, dass dieses Banner-Gerät von qualifiziertem Personal installiert und an die zu überwachte Maschine angeschlossen wird und dass dabei die Anweisungen in diesem Handbuch und alle geltenden Sicherheitsvorschriften beachtet werden. Wenn diese Anweisungen nicht befolgt werden, können schwere oder tödliche Verletzungen die Folge sein.

Der EZ-SCREEN von Banner ist für Maschinen- und Anlagenanwendungen mit Gefahrstellen und andere Schutzanwendungen ausgelegt. Der Anwender ist dafür verantwortlich, die Eignung des Schutzes für die Anwendung zu prüfen und für die Installation durch eine qualifizierte Person und in Übereinstimmung mit der Anleitung in diesem Handbuch zu sorgen.

WARNUNG:
- Das System darf nur bei geeigneten Anwendungen installiert werden.
- Wenn diese Anweisungen nicht befolgt werden, können schwere oder tödliche Verletzungen die Folge sein.
- Falls Bedenken bestehen, ob die Maschine mit dem EZ-SCREEN kompatibel ist, wenden Sie sich bitte an Banner Engineering.

3.4.1 Beispiele: Geeignete Anwendungen

Die EZ-SCREEN wird gewöhnlich u. a. bei den folgenden Anwendungen eingesetzt:
- Kleine Bestückungs- und Montageanlagen
- Automatische Fertigungsanlagen
- Roboterzellen
- Formpressen und mechanische Pressen
- Bestückungs- und Verpackungsmaschinen
- Lean-Manufacturing-Systeme

3.4.2 Beispiele: ungeeignete Anwendungen

Verwenden Sie EZ-SCREEN nicht in den folgenden Anwendungen:
- Bei Maschinen, deren Bewegung nicht sofort nach einem Stoppsignal unterbrochen werden kann, zum Beispiel Vollhubmaschinen (oder Maschinen mit Vollumdrehung).
- Bei Maschinen ohne ausreichende oder konstante Reaktionszeit und Stoppvermögen.
- Bei Maschinen, die Material oder Komponenten durch das Schutzfeld hindurch auswirken.
- In allen Umgebungen, die die Wirksamkeit eines optoelektronischen Sensorsystems ungünstig beeinflussen. So können zum Beispiel korrodierende Chemikalien oder Flüssigkeiten sowie extreme und unkontrollierte Rauch- oder Staubentwicklung die Wirksamkeit der Sensoren verringern.

Eine Person, die durch ein anerkanntes Ausbildungs- oder Berufsabschlusszertifikat, bzw. durch umfangreiche Kenntnisse und die entsprechende Ausbildung oder Erfahrung mit Erfolg nachweisen kann, dass sie in der Lage ist, Probleme bezüglich des in Frage stehenden Gegenstands und bei der Arbeit mit diesem zu lösen.

Wenn ein EZ-SCREEN zur Bereichssicherung installiert wird (d. h. wenn die Möglichkeit einer Hintertretungsgefahr besteht, siehe Reduzierung oder Beseitigung von Hintertretungsfahrnen auf Seite 23), kann die gefährliche Maschinenbewegung erst dann mit normalen Mitteln initiiert werden, wenn sich niemand im überwachten Bereich befindet und nachdem der EZ-SCREEN manuell zurückgesetzt worden ist.

3.5 Steuerungszuverlässigkeit: Redundanz und Selbstüberwachung

Das Redundanzprinzip bedeutet, dass der Schaltkreis des EZ-SCREEN so ausgeführt ist, dass, wenn der Ausfall einer einzelnen Komponente die Generierung des Stoppsignals verhindert würde, diese Komponente über ein redundantes Gegenstück verfügen muss, welches die gleiche Funktion erfüllt. Der EZ-SCREEN ist mit redundanten Mikroprozessoren gebaut.

Die Redundanz muss immer gewahrt sein, wenn der EZ-SCREEN in Betrieb ist. Da ein redundantes System seine Redundanz verliert, wenn eine Komponente ausfällt, ist der EZ-SCREEN so konstruiert, dass er sich ständig selbst überwacht. Wird der Ausfall einer Komponente vom Selbstüberwachungssystem (oder innerhalb des Systems) erkannt, so wird ein Stoppsignal an die überwachte Maschine gesendet, und der EZ-SCREEN wird in den Sperrzustand versetzt.

Die Aufhebung eines solchen Sperrzustandes erfordert:
- Austausch der fehlerhaften Komponente (um die Redundanz wiederherzustellen)
- Durchführung eines ordnungsgemäßen Resets

Auf dem Diagnose-Display werden mögliche Ursachen eines Sperrzustands angezeigt. Siehe Fehlerbehebung auf Seite 77.

3.6 Spezifikationen

3.6.1 Allgemeine Daten

Kurzschlussschutz

Elektrische Schutzklasse
III (gemäß IEC 61140: 1997)

Schutzart
Type 4 gemäß IEC 61496-1 und IEC 61496-2
Kategorie 4 PL e gemäß EN ISO13849-1
SIL3 gemäß IEC 61508; SIL CL3 gemäß IEC 62061
PFHz: $4,3 \times 10^{-9}$

Arbeitsbereich/Reichweite
14-mm-Ausführungen: 0,1 m bis 6 m (4 in bis 20 ft)
30-mm-Ausführungen: 0,1 m bis 18 m (4 in bis 60 ft)
- Reichweite sinkt bei Gebrauch von Spiegeln und/oder Schutzlinsen:
 - Schutzlinsen – ca. 10 % weniger Reichweite pro Schutzlinsen.
 - Glasspiegel – ca. 8 % weniger Reichweite pro Spiegel.
 Für weitere Informationen siehe das Datenblatt zu dem jeweiligen Spiegel.

Auflösung
14 mm oder 30 mm, je nach Ausführung

Effektiver Abstrahlwinkel (EAA)
Erfüllt die Anforderungen vom Typ 4 gemäß IEC 61496-2
$\pm 2,5^\circ$ bei 3 m

Betriebsbedingungen
0 °C bis +55 °C (+32 °F bis +131 °F)
95 % (nicht kondensierend)

Gehäuse
Gehäuse aus Strangpressaluminium mit gelber Pulverpolyester-Lackierung (Standardausführung, optional mit schwarzer oder weißer Lackierung oder mit vernickelter Silberlackierung) und sorgfältig versiegelte robuste Verschlusskappen aus Druckgusszink, Linsenabdeckung aus Acryl und Zugangsabdeckung aus Copolyester. Bei silbernen Ausführungen sind die Verschlusskappen ebenfalls vernickelt.

ESD-sichere Ausführungen sind mit statikableitenden Acryllinsen ausgestattet.

Schutzart
IP65 nach IEC

Stoß- und Vibrationsfestigkeit
Die Komponenten haben Vibrations- und Stoßtests nach IEC 61496-1 bestanden. Dazu gehören Schwingungen (10 Zyklen) von 10–55 Hz bei 0,35 mm (0,014 in) Einzelamplitude (0,70 mm Spitze zu Spitze) und Stöße von 10 G für 16 ms (6.000 Zyklen).

Montagezubehör
Sender und Empfänger werden jeweils mit einem Paar schwenkbarer Endmontagewinkel geliefert. Ausführungen mit einer Länge von mindestens 1050 mm enthalten außerdem einen schwenkbaren mittelmontagewinkel. Die Montagewinkel sind aus kaltgewalztem Stahl der Stärke 8 gefertigt und schwarz verzinkt.

Kabel und Anschlüsse
Siehe Anschlussleitungen auf Seite 16

Zertifizierungen

www.bannerengineering.com
3.6.2 Sender-Spezifikationen

Betriebsspannung am Gerät
24 V DC ± 15 % (eine nach EN IEC 60950 genormte SELV-Stromversorgung verwenden) Die externe Spannungsversorgung muss entsprechend IEC/EN 60204-1 kurze Stromausfälle von 20 ms ausgleichen können.

Restwelligkeit
± 10% Maximum

Versorgungsstrom
Max. 100 mA

Statusanzeigen
Eine zweifarbe (rot-grüne) Statusanzeige: zeigt die Betriebsart, einen Sperrzustand oder ausgeschalteten Zustand an.

Betriebsspannung am Gerät
Max. ±10%

Eingangsstrom (ohne Last)
Max. 275 mA, ohne OSSD1- und OSSD2-Lasten (bis zu jeweils 0,5 A zusätzliche können).

Ansprechzeit
Abhängig von der Anzahl Erfassungs-Lichtstrahlen; Anzahl der Strahlen und Ansprechzeit für die einzelnen Ausführungen sind in der Tabelle angegeben.

CSSI-Ansprechzeit (nur kaskadierbare SLSC...-Ausführungen)
Ansprechzeit für einen kaskadierbaren Empfänger durch öffnende Kontakte an der Kaskaden-Schnittstelle (CSSI); max. 40 ms (Kontakte müssen für mindestens 60 ms öffnen).

EDM-Eingang
+24-V-DC-Signale von externen Gerätekontakten können über die EDM1-Klemme im Empfänger überwacht werden (Einkanal-, Zweikanal- oder Keine Überwachung).

High-Signal: 10 bis 30 V DC bei 30 mA typisch

Low-Signal: 0 bis 3 V DC

Abfallzeit: 200 ms max.

Wiedereinsatzfähig
Blockiert zu Frei (OSSDs schalten sich ein; variiert je nach der Summe der Erfassungs-Lichtstrahlen und danach, ob der Synchronisierungsstrahl blockiert ist):

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Lichtstrahl 1 (Synchronisierungssstrahl)</th>
<th>Alle anderen Strahlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 mm</td>
<td>109 ms bis 800 ms</td>
<td>33 ms bis 220 ms</td>
</tr>
<tr>
<td>30 mm</td>
<td>81 ms bis 495 ms</td>
<td>25 ms bis 152 ms</td>
</tr>
</tbody>
</table>

Reset-Eingang
Der Reset-Eingang muss 0,25 bis 2 Sekunden lang hoch und anschließend niedrig sein, damit der Empfänger zurückgesetzt wird.

High-Signal: 10 bis 30 V DC bei 30 mA typisch

Low-Signal: 0 bis 3 V DC

Zeit bei geschlossenem Schalter: 0,25 s bis 2 s

3.6.3 Empfänger-Spezifikationen

Betriebsspannung am Gerät
24 V DC ± 15 % (eine nach EN IEC 60950 genormte SELV-Stromversorgung verwenden) Die externe Spannungsversorgung muss entsprechend IEC/EN 60204-1 kurze Stromausfälle von 20 ms ausgleichen können.

Restwelligkeit
± 10% Maximum

Versorgungsstrom
Max. 100 mA

Statusanzeigen

Betriebsspannung am Gerät
Max. ±10%

Eingangsstrom (ohne Last)
Max. ±10%

Ansprechzeit
Abhängig von der Anzahl Erfassungs-Lichtstrahlen; Anzahl der Strahlen und Ansprechzeit für die einzelnen Ausführungen sind in der Tabelle angegeben.

CSSI-Ansprechzeit (nur kaskadierbare SLSC...-Ausführungen)
Ansprechzeit für einen kaskadierbaren Empfänger durch öffnende Kontakte an der Kaskaden-Schnittstelle (CSSI); max. 40 ms (Kontakte müssen für mindestens 60 ms öffnen).

EDM-Eingang
+24-V-DC-Signale von externen Gerätekontakten können über die EDM1-Klemme im Empfänger überwacht werden (Einkanal-, Zweikanal- oder Keine Überwachung).

High-Signal: 10 bis 30 V DC bei 30 mA typisch

Low-Signal: 0 bis 3 V DC

Abfallzeit: 200 ms max.

Wiedereinsatzfähig
Blockiert zu Frei (OSSDs schalten sich ein; variiert je nach der Summe der Erfassungs-Lichtstrahlen und danach, ob der Synchronisierungsstrahl blockiert ist):

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Lichtstrahl 1 (Synchronisierungssstrahl)</th>
<th>Alle anderen Strahlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 mm</td>
<td>109 ms bis 800 ms</td>
<td>33 ms bis 220 ms</td>
</tr>
<tr>
<td>30 mm</td>
<td>81 ms bis 495 ms</td>
<td>25 ms bis 152 ms</td>
</tr>
</tbody>
</table>

Reset-Eingang
Der Reset-Eingang muss 0,25 bis 2 Sekunden lang hoch und anschließend niedrig sein, damit der Empfänger zurückgesetzt wird.

High-Signal: 10 bis 30 V DC bei 30 mA typisch

Low-Signal: 0 bis 3 V DC

Zeit bei geschlossenem Schalter: 0,25 s bis 2 s

Wellenlänge der Senderelemente
Infrarot-LEDs, Maximal-Emission bei 850 nm

Fernlaser-Eingang Optional – nur bei Senderausführungen SLSE...-..Q5 erhältlich
Der Test-Modus wird aktiviert, indem entweder mindestens 50 ms lang ein schwaches Signal (unter 3 V DC) an die TEST1-Klemme des Senders gelegt oder ein zwischen der TEST1-Klemme und TEST2 und +24 V DC angeschlossener Schalter mindestens 50 ms lang geöffnet wird. Die Strahlabtastung stoppt, um einen blockierten Zustand zu simulieren. Ein hohes Signal bei TEST1 deaktiviert den Test-Modus.

Hohes Signal: 10 bis 30 V DC

Niedriges Signal: 0 bis 3 V DC

Eingangssignal-Schaltgeräte (OSSDs)
Zwei redundante Transistorausgänge mit 24 V DC, max. 0,5 A, die die OSSD-Sicherheitsausgänge (Ausgangssignal-Schaltgeräte) versorgen. (Optionale Interface-Module für AC- oder größere DC-Lasten verwenden.) Geeignet für das „Handshake-Sicherheitsprotokoll“ von Banner.

Spannung im AN-Zustand: ≥ Vin – 1,5 V DC

Spannung im AUS-Zustand: Max. 1,2 V DC (0 V DC bis 1,2 V DC)

Max. Lastkapazität: 1,0 µF

Max. Lastinduktivität: 10 H

Kabelwiderstand: max. 10 Ω

OSSD-Testimpulsbreite: 100−300 Mikrosekunden typisch

OSSD-Testimpulsperiode: 10 ms bis 27 ms (abhängig von der Strahlenanzahl)

Schaltzeit: 0−0,5 A

Schaltvermögen des Hilfsausgangs
Stromliefernd (pnp) Transistorausgang, 24 V DC bei 75 mA max.

Konfiguration

Einstellung von Schalt-/Verriegelungsausgang: redundante Schalter. Die Werkseinstellung ist Code 1.

Statusanzeigen

Unempfindlichkeit gegen Umgebungsschutz
10,000 lux bei Einfallswinkel von 5°

Störfestigkeit Blitzeinheit
Vollständig störfest gegen einen Lichtblitz der „Fireball“-Ausführung FB2PST der Federal Signal Corp.
3.6.4 Abmessungen

Dargestellt sind die Montageabmessungen von Sender und Empfänger sowie die Lage des definierten Bereichs.

* Für die Modelle SLS..-150 beträgt dieser Abstand 52 mm (2“).

<table>
<thead>
<tr>
<th>Sender-/Empfänger-Ausführung</th>
<th>Gehäuselänge L1</th>
<th>Abstand zwischen Winkelbohrungen</th>
<th>Schutzfeldy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L2</td>
<td>L3</td>
<td></td>
</tr>
<tr>
<td>SLS..-150</td>
<td>262 mm (10,3 in)</td>
<td>295 mm (11,6 in)</td>
<td>237 mm (9,3 in)</td>
</tr>
<tr>
<td>SLS..-300</td>
<td>372 mm (14,6 in)</td>
<td>405 mm (16,0 in)</td>
<td>347 mm (13,7 in)</td>
</tr>
<tr>
<td>SLS..-450</td>
<td>522 mm (20,6 in)</td>
<td>555 mm (21,9 in)</td>
<td>497 mm (19,6 in)</td>
</tr>
<tr>
<td>SLS..-600</td>
<td>671 mm (26,4 in)</td>
<td>704 mm (27,7 in)</td>
<td>646 mm (25,4 in)</td>
</tr>
<tr>
<td>SLS..-750</td>
<td>821 mm (32,3 in)</td>
<td>854 mm (33,6 in)</td>
<td>796 mm (31,3 in)</td>
</tr>
<tr>
<td>SLS..-900</td>
<td>971 mm (38,2 in)</td>
<td>1004 mm (39,5 in)</td>
<td>946 mm (37,2 in)</td>
</tr>
<tr>
<td>SLS..-1050</td>
<td>1120 mm (44,1 in)</td>
<td>1153 mm (45,4 in)</td>
<td>1095 mm (43,1 in)</td>
</tr>
<tr>
<td>SLS..-1200</td>
<td>1270 mm (50,0 in)</td>
<td>1303 mm (51,3 in)</td>
<td>1245 mm (49,0 in)</td>
</tr>
<tr>
<td>SLS..-1350</td>
<td>1420 mm (55,9 in)</td>
<td>1453 mm (57,2 in)</td>
<td>1395 mm (54,9 in)</td>
</tr>
<tr>
<td>SLS..-1500</td>
<td>1569 mm (61,8 in)</td>
<td>1602 mm (63,1 in)</td>
<td>1544 mm (60,8 in)</td>
</tr>
<tr>
<td>SLS..-1650</td>
<td>1719 mm (67,7 in)</td>
<td>1752 mm (69,0 in)</td>
<td>1694 mm (66,7 in)</td>
</tr>
<tr>
<td>SLS..-1800</td>
<td>1869 mm (73,6 in)</td>
<td>1902 mm (74,9 in)</td>
<td>1844 mm (72,6 in)</td>
</tr>
<tr>
<td>SLS..-1950</td>
<td>2018 mm (79,4 in)</td>
<td>2051 mm (80,8 in)</td>
<td>1993 mm (78,5 in)</td>
</tr>
<tr>
<td>SLS..-2100</td>
<td>2168 mm (85,4 in)</td>
<td>2201 mm (86,7 in)</td>
<td>2143 mm (84,4 in)</td>
</tr>
<tr>
<td>SLS..-2250</td>
<td>2318 mm (91,3 in)</td>
<td>2351 mm (92,6 in)</td>
<td>2293 mm (90,3 in)</td>
</tr>
<tr>
<td>SLS..-2400</td>
<td>2468 mm (97,2 in)</td>
<td>2501 mm (98,5 in)</td>
<td>2443 mm (96,2 in)</td>
</tr>
</tbody>
</table>

2 Nennwert
3.6.5 Endkappen-Montagewinkel

![Diagram](image)

3.6.6 Mittlerer Zentrierwinkel

Typ EZA-MBK-12: Der Stützwinkel wird mit Sendern und Empfängern über 1050 mm (3,4 ft) und länger geliefert. Die Abmessungen der Sender und Empfänger aus Edelstahl vom Typ EZA-MBK-12N sind mit denen des ESD-Modells identisch.

![Diagram](image)
4 Komponenten

4.1 Systemkomponenten

Die Standardmodelle zeichnen sich durch ein gelb lackiertes Aluminiumgehäuse aus. Andere Gehäuseausführungen sind ebenfalls erhältlich, darunter in Schwarz, Weiß und Silber (vernickelt); weitere Informationen erhalten Sie beim Werk.

4.2 Standardmodelle für Sender und Empfänger (nicht kaskadierbar) mit 14 mm Auflösung

Es sind die Standardmodelle mit 8-poligem Schnellanschluss aufgeführt; die Verdrahtung der 8-poligen Sender/Empfänger ist „vertauschbar“. Bestellen Sie ein 8-poliges Kabel für jeden 8-poligen Sender oder Empfänger oder ein 5-poliges Kabel für jeden 5-poligen Sender.

Zu kaskadierbaren 14 mm Sender- und Empfängermodellen siehe Kaskadierbare Sender- und Empfängermodelle mit 14 mm Auflösung auf Seite 63.
4.3 Standardmodelle für Sender und Empfänger (nicht kaskadierbar) mit 30 mm Auflösung

Es sind die Standardmodelle mit 8-poligem Schnellanschluss aufgeführt; die Verdrahtung der 8-poligen Sender/Empfänger ist „vertauschbar“. Bestellen Sie ein 8-poliges Kabel für jeden 8-poligen Sender oder Empfänger oder ein 5-poliges Kabel für jeden 5-poligen Sender.

Zu kaskadierbaren 30 mm Sender- und Empfängermodellen siehe [Kaskadierbare Sender- und Empfängermodelle mit 30 mm Auflösung](#) auf Seite 64.

<table>
<thead>
<tr>
<th>Schutzfeldhöhe</th>
<th>Standardmodelle mit 14 mm Auflösung, Reichweite 0,1 m bis 6 m (4 in bis 20 ft)</th>
<th>Standardmodelle mit 30 mm Auflösung, Reichweite 0,1 m bis 18 m (4 in bis 60 ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sender (8-polig)</td>
<td>Empfänger</td>
</tr>
<tr>
<td>150 mm (5,9 in)</td>
<td>SLSE14-150Q8</td>
<td>SLSR14-150Q8</td>
</tr>
<tr>
<td>300 mm (11,8 in)</td>
<td>SLSE14-300Q8</td>
<td>SLSR14-300Q8</td>
</tr>
<tr>
<td>450 mm (17,7 in)</td>
<td>SLSE14-450Q8</td>
<td>SLSR14-450Q8</td>
</tr>
<tr>
<td>600 mm (23,6 in)</td>
<td>SLSE14-600Q8</td>
<td>SLSR14-600Q8</td>
</tr>
<tr>
<td>750 mm (29,5 in)</td>
<td>SLSE14-750Q8</td>
<td>SLSR14-750Q8</td>
</tr>
<tr>
<td>900 mm (35,4 in)</td>
<td>SLSE14-900Q8</td>
<td>SLSR14-900Q8</td>
</tr>
<tr>
<td>1050 mm (41,3 in)</td>
<td>SLSE14-1050Q8</td>
<td>SLSR14-1050Q8</td>
</tr>
<tr>
<td>1200 mm (47,2 in)</td>
<td>SLSE14-1200Q8</td>
<td>SLSR14-1200Q8</td>
</tr>
<tr>
<td>1350 mm (53,1 in)</td>
<td>SLSE14-1350Q8</td>
<td>SLSR14-1350Q8</td>
</tr>
<tr>
<td>1500 mm (59 in)</td>
<td>SLSE14-1500Q8</td>
<td>SLSR14-1500Q8</td>
</tr>
<tr>
<td>1650 mm (65 in)</td>
<td>SLSE14-1650Q8</td>
<td>SLSR14-1650Q8</td>
</tr>
<tr>
<td>1800 mm (70,9 in)</td>
<td>SLSE14-1800Q8</td>
<td>SLSR14-1800Q8</td>
</tr>
<tr>
<td>Schutzfeldhöhe</td>
<td>Standardmodelle mit 30 mm Auflösung, Reichweite 0,1 m bis 18 m (4 in bis 60 ft)</td>
<td>Sender (8-polig)</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>1200 mm (47,2 in)</td>
<td>SLSE30-1200Q8 SLSR30-1200Q8 SLSP30-1200Q88</td>
<td>80</td>
</tr>
<tr>
<td>1350 mm (53,1 in)</td>
<td>SLSE30-1350Q8 SLSR30-1350Q8 SLSP30-1350Q88</td>
<td>90</td>
</tr>
<tr>
<td>1500 mm (59 in)</td>
<td>SLSE30-1500Q8 SLSR30-1500Q8 SLSP30-1500Q88</td>
<td>100</td>
</tr>
<tr>
<td>1650 mm (65 in)</td>
<td>SLSE30-1650Q8 SLSR30-1650Q8 SLSP30-1650Q88</td>
<td>110</td>
</tr>
<tr>
<td>1800 mm (70,9 in)</td>
<td>SLSE30-1800Q8 SLSR30-1800Q8 SLSP30-1800Q88</td>
<td>120</td>
</tr>
<tr>
<td>1950 mm (76,8 in)</td>
<td>SLSE30-1950Q8 SLSR30-1950Q8 SLSP30-1950Q88</td>
<td>130</td>
</tr>
<tr>
<td>2100 mm (82,7 in)</td>
<td>SLSE30-2100Q8 SLSR30-2100Q8 SLSP30-2100Q88</td>
<td>140</td>
</tr>
<tr>
<td>2250 mm (88,6 in)</td>
<td>SLSE30-2250Q8 SLSR30-2250Q8 SLSP30-2250Q88</td>
<td>150</td>
</tr>
<tr>
<td>2400 mm (94,5 in)</td>
<td>SLSE30-2400Q8 SLSR30-2400Q8 SLSP30-2400Q88</td>
<td>160</td>
</tr>
</tbody>
</table>

Um die 5-poligen Sendermodelle mit dem Testeingang zu bestellen, ersetzen Sie die Endung „Q8“ durch „Q5“, (z. B. SLSE30-150Q5), und für das Paar ersetzen Sie „Q88“ durch „Q85“ (z. B. SLSP30-150Q85).
Um das Modell mit Pigtail-Schnellanschluss (nur 8-polige Modelle) zu bestellen, ersetzen Sie das „Q“ in der Typenbezeichnung durch ein „P“ (z. B. SLSE30-150P8).
Um die ESD-sicheren Modelle zu bestellen, fügen Sie vor der Bezeichnung der Schnellanschlussoption ein „N“ an die Typenbezeichnung an (z. B. SLSE30-150NQ8). Ausführungen mit Schutz gegen elektrostatische Entladungen sind nicht mit Pigtail-Schnellanschluss erhältlich.
Um optionale Gehäuseausführungen zu bestellen, fügen Sie die folgenden Buchstaben vor der Schnellanschlusskennzeichnung in die Typenbezeichnung ein:
- fügen Sie für eine Oberflächenausführung in klarer (gebürsteten) exoxierten Aluminium und schwarze Endkap- pen ein „A“ hinzu (z. B. SLSE30-150AQ8),
- fügen Sie für eine vernickelte („silberne“) Oberflächenausführung und schwarze Endkappen ein „S“ hinzu (z. B. SLSE30-150SQ8),
- fügen Sie für eine schwarz lackierte Oberflächenausführung und schwarze Endkappen ein „B“ hinzu (z. B. SLSE30-150BO8),
- fügen Sie für eine weiß lackierte Oberfläche und schwarze Endkappen ein „W“ hinzu (z. B. SLSE30-150WQ8),
- fügen Sie für eine „Sicherheits-Orange“ lackierte Oberfläche und schwarze Endkappen „SO“ hinzu (z. B. SLSE30-150SOQ8).

4.4 Anschlussleitungen
Maschinenanschlussleitungen versorgen das erste Sender-Empfänger-Paar mit Strom. Die Anschlusskabel, mit denen die Sensoren untereinander verbunden werden, versorgen die nachgeschalteten Sender und Empfänger in der Kaskade.

4.4.1 Einseitig vorkonfektionierte Anschlussleitungen (Maschinenanschluss, je ein Kabel für jeden Sender und Empfänger)
Für 8-polige Sender und Empfänger

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Länge</th>
<th>Art</th>
<th>Abmessungen</th>
<th>Steckerbelegung (Buchse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QDE-815D</td>
<td>4,57 m (15 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QDE-825D</td>
<td>7,62 m (25 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QDE-850D</td>
<td>15,2 m (50 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QDE-875D</td>
<td>22,9 m (75 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8-polige verschraubbare M12/M12x1-Anschlussleitungen

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Länge</th>
<th>Art</th>
<th>Abmessungen</th>
<th>Steckerbelegung (Buchse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QDE-8100D</td>
<td>30,5 m (100 ft)</td>
<td></td>
<td></td>
<td>1 = Braun 5 = Schwarz 2 = Orange/Blau 6 = Blau 3 = Orange 7 = Grün/Gelb 4 = Weiß 8 = Lila</td>
</tr>
</tbody>
</table>

Für 8-polige Sender und Empfänger

8-polige Systeme erfordern zwei 8-polige Schnellanschlusskabel. Bei 8-poligen Sendern werden nur die Pins 1, 6 und 7 angeschlossen. Die Steckerbelegung und die Farbkodierungen bei der europäischen M12-Spezifikation sind nur zur Information aufgeführt. Der Benutzer muss die Eignung dieser Kabel für jede Anwendung überprüfen.

<table>
<thead>
<tr>
<th>Banner-Kabel, Steckerbelegung/Farbcode</th>
<th>Europäische M12-Spezifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Farbe</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Braun</td>
</tr>
<tr>
<td>2</td>
<td>Orange/Schwarz</td>
</tr>
<tr>
<td>3</td>
<td>Orange</td>
</tr>
<tr>
<td>4</td>
<td>Weiß</td>
</tr>
<tr>
<td>5</td>
<td>Schwarz</td>
</tr>
<tr>
<td>6</td>
<td>Blau</td>
</tr>
<tr>
<td>7</td>
<td>Grün/Gelb</td>
</tr>
<tr>
<td>8</td>
<td>Lila</td>
</tr>
</tbody>
</table>

5-polige verschraubbare M12/M12x1-Anschlussleitungen mit grün-gelbem Erdungsleiter – einseitig vorkonfektioniert

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Länge</th>
<th>Art</th>
<th>Abmessungen</th>
<th>Steckerbelegung (Buchse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QDE-510D</td>
<td>4,57 m (15 ft)</td>
<td>Gerade</td>
<td>ø 14,5 mm M12 x 1</td>
<td>1 = Braun 2 = Weiß 3 = Blau 4 = Schwarz 5 = Grün-Gelb</td>
</tr>
<tr>
<td>QDE-525D</td>
<td>7,62 m (25 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QDE-550D</td>
<td>15,2 m (50 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QDE-575D</td>
<td>22,9 m (75 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QDE-5500D</td>
<td>30,5 m (100 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Für 5-polige Sender und Empfänger

5-poliger EZ-SCREEN-Sender, Typenbezeichnungen SLSE—..QS mit Testfunktion. Ein 5-poliges und ein 8-poliges Schnellanschlusskabel ist für das komplette System erforderlich. Die Steckerbelegung und die Farbkodierungen bei der europäischen M12-Spezifikation sind nur zur Information aufgeführt. Der Benutzer muss die Eignung dieser Kabel für jede Anwendung überprüfen.

<table>
<thead>
<tr>
<th>Banner-Kabel, Steckerbelegung/Farbcode</th>
<th>Europäische M12-Spezifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Farbe</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Braun</td>
</tr>
<tr>
<td>2</td>
<td>Weiß</td>
</tr>
<tr>
<td>3</td>
<td>Blau</td>
</tr>
<tr>
<td>4</td>
<td>Schwarz</td>
</tr>
<tr>
<td>5</td>
<td>Grün/Gelb</td>
</tr>
</tbody>
</table>

4.4.2 Beidseitig vorkonfektionierte (Sensor-)Anschlusskabel

8-polige verschraubbare M12/M12x1-Anschlussleitungen – beidseitig vorkonfektioniert

<table>
<thead>
<tr>
<th>Ausführung (8-polig/8-polig)</th>
<th>Länge</th>
<th>Art</th>
<th>Abmessungen</th>
<th>Pinbelegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEE2R-81D</td>
<td>0,31 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Weiß 2 = Braun 3 = Grün 4 = Gelb 5 = Grau 6 = Rosa 7 = Blau 8 = Rot</td>
</tr>
<tr>
<td>DEE2R-81D</td>
<td>0,91 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Weiß 2 = Braun 3 = Grün 4 = Gelb 5 = Grau 6 = Rosa 7 = Blau 8 = Rot</td>
</tr>
<tr>
<td>DEE2R-88D</td>
<td>2,44 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Weiß 2 = Braun 3 = Grün 4 = Gelb 5 = Grau 6 = Rosa 7 = Blau 8 = Rot</td>
</tr>
<tr>
<td>DEE2R-815D</td>
<td>4,57 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Weiß 2 = Braun 3 = Grün 4 = Gelb 5 = Grau 6 = Rosa 7 = Blau 8 = Rot</td>
</tr>
<tr>
<td>DEE2R-825D</td>
<td>7,62 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Weiß 2 = Braun 3 = Grün 4 = Gelb 5 = Grau 6 = Rosa 7 = Blau 8 = Rot</td>
</tr>
<tr>
<td>DEE2R-850D</td>
<td>15,2 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Weiß 2 = Braun 3 = Grün 4 = Gelb 5 = Grau 6 = Rosa 7 = Blau 8 = Rot</td>
</tr>
<tr>
<td>DEE2R-875D</td>
<td>22,9 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Weiß 2 = Braun 3 = Grün 4 = Gelb 5 = Grau 6 = Rosa 7 = Blau 8 = Rot</td>
</tr>
<tr>
<td>DEE2R-8100D</td>
<td>30,5 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Weiß 2 = Braun 3 = Grün 4 = Gelb 5 = Grau 6 = Rosa 7 = Blau 8 = Rot</td>
</tr>
</tbody>
</table>

5-polige verschraubbare M12/M12x1-Anschlussleitungen, beidseitig vorkonfektioniert

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Länge</th>
<th>Art</th>
<th>Abmessungen</th>
<th>Pinbelegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEE2R-51D</td>
<td>0,31 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Braun 2 = Weiß 3 = Blau 4 = Schwarz 5 = Grün-gelb</td>
</tr>
<tr>
<td>DEE2R-53D</td>
<td>0,91 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Braun 2 = Weiß 3 = Blau 4 = Schwarz 5 = Grün-gelb</td>
</tr>
<tr>
<td>DEE2R-58D</td>
<td>2,44 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Braun 2 = Weiß 3 = Blau 4 = Schwarz 5 = Grün-gelb</td>
</tr>
<tr>
<td>DEE2R-515D</td>
<td>4,57 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Braun 2 = Weiß 3 = Blau 4 = Schwarz 5 = Grün-gelb</td>
</tr>
<tr>
<td>DEE2R-525D</td>
<td>7,62 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Braun 2 = Weiß 3 = Blau 4 = Schwarz 5 = Grün-gelb</td>
</tr>
<tr>
<td>DEE2R-550D</td>
<td>15,2 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Braun 2 = Weiß 3 = Blau 4 = Schwarz 5 = Grün-gelb</td>
</tr>
<tr>
<td>DEE2R-575D</td>
<td>22,9 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Braun 2 = Weiß 3 = Blau 4 = Schwarz 5 = Grün-gelb</td>
</tr>
<tr>
<td>DEE2R-5100D</td>
<td>30,5 m</td>
<td>Gerade Buchse/gerader Stecker</td>
<td>Ø 14,5 M12 x 1</td>
<td>1 = Braun 2 = Weiß 3 = Blau 4 = Schwarz 5 = Grün-gelb</td>
</tr>
</tbody>
</table>

4.4.3 Vorkonfektionierte Verteiler

Die vorkonfektionierten Verteiler vom Typ CSB dienen dem einfachen Anschluss zwischen dem 8-poligen Empfänger und dem zugehörigen 8-poligen Sender eines EZ-SCREEN und haben ein einziges Hauptleitungskabel für den optionalen austauschbaren Anschluss. Die beidseitig vorkonfektionierten Kabel vom Typ DEE2R-.. können zur Verlängerung der vorkonfektionierten Hauptleitung und Stichleitung 1 oder 2 verwendet werden. (Stichleitung 1 und 2 sind 300 mm/1 ft lang.) Die einseitig vorkonfektionierten Kabel vom Typ QDE-8..D können zur Verlängerung der vorkonfektionierten Hauptleitung für ablaengbare Anwendungen verwendet werden.

3 Standardanschlussleitungen sind aus gelbem PVC mit schwarzer Endhülse gefertigt. Für schwarzes PVC mit schwarzer Endhülse das Suffix "B" zur Typenbezeichnung hinzufügen (Beispiel: DEE2R-81DB)
8-polige verschraubbare M12/M12x1-Anschlussleitungen, vorkonfektionierte Verteiler – flacher Verteiler

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Hauptleitungen (Stecker)</th>
<th>Stichleitungen (Buchse)</th>
<th>Pinbelegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSB-M1280M1280</td>
<td>Keine Hauptleitung</td>
<td>Keine Stichleitungen</td>
<td></td>
</tr>
<tr>
<td>CSB-M1281M1281</td>
<td>0,3 m (1 ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSB-M1288M1281</td>
<td>2,44 m (8 ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSB-M12819M1281</td>
<td>4,57 m (15 ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSB-M12825M1281</td>
<td>7,62 m (25 ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSB-UNT825M1281</td>
<td>7,62 m (25 ft), nicht vorkonfektioniert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.4.4 Trennwandstecker
Anschluss für EZ-SCREEN-Komponentenkabel an die Steuertafel.

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Anschluss</th>
<th>Abmessungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMEF-810D</td>
<td>3-m-Kabel (10 ft) für 8-polige M12x1-Steckbuchse, abzulängen (Banner-Farbc ode); 22 AWG/0,33 mm².</td>
<td>3 m (9.8 ft) 21,5 mm (0,85 Zoll) 13,0 mm (0,51 Zoll) ø 18,0 mm (0,71 Zoll)</td>
</tr>
</tbody>
</table>

4.5 Dokumentation

<table>
<thead>
<tr>
<th>Ident-Nummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>112852</td>
<td>Bedienungshandbuch für EZ-SCREEN-System, 14/30 mm</td>
</tr>
<tr>
<td>113361</td>
<td>Prüfkarte (tägliche Überprüfung): eigenständige Systeme</td>
</tr>
<tr>
<td>118173</td>
<td>Prüfkarte (tägliche Überprüfung): Kaskadensysteme</td>
</tr>
<tr>
<td>113362</td>
<td>Prüfkarte (halbjährliche Überprüfung)</td>
</tr>
<tr>
<td>114189</td>
<td>Etikett am Diagnose-Display</td>
</tr>
</tbody>
</table>
5 Installationsanleitung

5.1 Installation und Ausrichtung

Anmerkung:
• Lesen Sie diesen Abschnitt vor Installation des Systems sorgfältig durch.
• Wenn diese Anweisungen nicht befolgt werden, können schwere oder tödliche Verletzungen die Folge sein.
• Werden nicht alle Verfahren bei der Montage, Installation, beim Anschließen und der Überprüfung vorschriftsmäßig eingehalten, so kann das Banner-Gerät nicht den Schutz bieten, für den es ausgelegt ist.
• Der Anwender ist für die Einhaltung aller lokalen und nationalen Gesetze, Vorschriften und Bestimmungen hinsichtlich der Installation und des Einsatzes dieses Steuersystems bei jeder individuellen Anwendung verantwortlich. Sämtliche rechtlichen Anforderungen müssen erfüllt und alle in dieser Anleitung enthaltenen technischen Installations- und Wartungsanweisungen müssen befolgt werden.
• Es liegt in der alleinigen Verantwortung des Anwenders dafür zu sorgen, dass dieses Banner-Gerät von qualifiziertem Personal installiert und an die zu überwachte Maschine angeschlossen wird und dass dabei die Anweisungen in diesem Handbuch und alle geltenden Sicherheitsvorschriften beachtet werden. Eine qualifizierte Person ist eine Person, die durch ein anerkanntes Ausbildungs- oder Berufsschlusszertifikat, bzw. durch umfangreiche Kenntnisse und die entsprechende Ausbildung oder Erfahrung mit Erfolg nachweisen kann, dass sie in der Lage ist, Probleme bezüglich des in Frage stehenden Gegenstands und bei der Arbeit mit diesem zu lösen.

5.2 Überlegungen zur mechanischen Installation

Die folgenden beiden Faktoren beeinflussen die Anordnung der mechanischen Installation des EZ-SCREEN-Systems am stärksten: der Sicherheitsabstand (Mindestabstand) und die zusätzlichen Schutzeinrichtungen bzw. die Beseitigung von Hintertretungsgefahren. Außerdem sind zu beachten:
• Ausrichtung von Sender und Empfänger (siehe Ausrichtung von Sender und Empfänger auf Seite 25)
• Benachbarte reflektierende Oberflächen (siehe Benachbarte reflektierende Oberflächen auf Seite 26)
• Verwendung von Umlenkspiegeln (siehe Verwendung von Umlenkspiegeln auf Seite 27)
• Installation mehrerer Systeme (siehe Installation mehrerer Systeme auf Seite 28)

WARNUNG:
• Sorgfältige Positionierung der Systemkomponenten
• Die Nichtbeachtung dieser Warnhinweis kann zu schwerer Körperverletzung oder Tod führen.
• Die Systemkomponenten müssen so positioniert werden, dass die Gefahr nicht durch Über-, Unter-, Um- oder Durchgreifen des Erfassungsfelds erreicht werden kann. Zusätzliche Schutzeinrichtungen können erforderlich sein.

5.2.1 Berechnung des Sicherheitsabstands (Mindestabstand)

Der Sicherheitsabstand (Ds), auch als Mindestabstand (S) bezeichnet, ist der Abstand, der mindestens zwischen dem Schutzfeld und der nächstgelegenen Gefahrstelle bestehen darf. Der Abstand wird so berechnet, dass der EZ-SCREEN bei Erfassung eines Objekts oder einer Person (durch Blockierung eines Lichtstrahls) ein Stoppsignal an die Maschine sendet, woraufhin die Maschine stoppt, bevor die Person eine Gefahrstelle an der Maschine erreichen kann.

WARNUNG:

- **Berechnen Sie den des Sicherheitsabstand (Mindestabstand)**
- Bei Nichteinhaltung des erforderlichen Sicherheitsabstands (Mindestabstands) können schwere oder tödliche Verletzungen die Folge sein.

WARNUNG: Durch eine reduzierte Auflösung steigt der Eintrittstiefefaktor (oder C). Erhöhen Sie den Tiefeneindringfaktor, um den richtigen Mindestabstand zu berechnen, wenn eine Konfiguration mit reduzierter Auflösung verwendet wird. Der Modus für reduzierte Auflösung ist stets auszuschalten, wenn die größere Mindestobjektgröße nicht erforderlich ist.

Abbildung 3. Sicherheitsabstand (Mindestabstand) und feste Schutz einrichtung

Formel und Beispiele

Anwendungen in den USA

Formel für den Sicherheitsabstand (Mindestabstand) für Anwendungen in den USA:

\[D_s = K \times (T_s + T_r) + D_{pf} \]

Anwendungen in Europa

Formel für den Mindestabstand für Anwendungen in Europa:

\[S = (K \times T) + C \]

www.bannerengineering.com
Anwendungen in den USA

Ds
Sicherheitsabstand (in Zoll)

K
1600 mm pro Sekunde (oder 63 in pro Sekunde), die nach OSHA 29CFR1910.217 und ANSI B11.19 empfohlene Handgeschwindigkeitskonstante (siehe Anmerkung 1 unten)

Ts
Die Gesamtstopzeit der Maschine (in Sekunden) vom ersten „Stoppsignal“ bis zum vollständigen Stillstand, einschließlich der Stopzonen für alle betreffenden Steuerelemente (z. B. IM- und -..-Interface-Module), gemessen bei maximaler Maschinen- geschwindigkeit (siehe Anmerkung 3 unten)

Tr
Maximale Ansprechzeit (in Sekunden) des Sender-Empfänger-Paares des EZ-SCREEN (abhängig vom Modell)

Dpf

Anwendungen in Europa

S
Mindestabstand in mm ab dem Gefahrenbereich zur Mittellinie des Lichtvorhangs. Der zulässige Mindestabstand beträgt 100 mm (175 mm für nicht-industrielle Anwendungen) unabhängig vom errechneten Wert.

K
Handgeschwindigkeitskonstante (siehe Anmerkung 2 unten); 2000 mm/s (bei einem Mindestabstand ≤ 500 mm) 1600 mm/s (bei einem Mindestabstand > 500 mm)

T
Die Gesamtansprechzeit bis zum Maschinenstillstand (in Sekunden), von der physikalischen Auslösung der Sicherheitsvorrichtung bis zum Stillstand der Maschine (bzw. bis zur Gefahrbehei- tigung). Dieser Wert kann in zwei Teile gegliedert werden: Ts und Tr, wobei T = Ts + Tr

C
Der zusätzliche Abstand in mm; dieser basiert auf dem Eindringen einer Hand oder eines Gegenstandes in den Gefahrenbereich vor dem Auslösen einer Sicherheitsvorrichtung. Zur Berechnung (in mm) wird folgende Formel angewandt:

\[C = 8 \times (d - 14) \]

wobei \(d \) die Auflösung des Lichtvorhangs ist (bei \(d \) ≤ 40 mm).

Tabelle 1. Eintrittstiefefaktor (Dpf)

<table>
<thead>
<tr>
<th>Rezidivierte Auflösung</th>
<th>Eintrittstiefefaktor (Dpf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14-mm-Systeme</td>
</tr>
<tr>
<td>AUS</td>
<td>24 mm (1 in)</td>
</tr>
<tr>
<td>EIN</td>
<td>78 mm (3 in)</td>
</tr>
</tbody>
</table>

Anmerkungen:

1. Die von der OSHA empfohlene Handgeschwindigkeitskonstante \(K \) wurde in diversen Studien ermittelt, und obwohl diese Studien Geschwindigkeiten von 1600 mm/s bis über 2500 mm/s angeben, handelt es sich hierbei um keine unumstößlichen Werte. Bei der Bestimmung des Wertes von \(K \) sollten alle Fakto- ren einschließlich der körperlichen Fähigkeiten der Bedienungsperson berücksichtigt werden.

3. \(T_s \) wird üblicherweise mit einem Stoppzeitmessgerät erfasst. Wenn die vom Maschinenhersteller spezialisierte Ebene verwendet wird, empfehlen wir, mindestens 20 % als Sicherheitsaufschlag hinzuzufügen, um eine eventuelle Alterung des Kupplungs-/Bremssystems zu berücksichtigen. Diese Messung muss den langsameren der beiden MPSE- oder MPSE-2-Kanäle berücksichtigen sowie die Ansprechzeit von allen Vorrichtungen oder Steuerungen, die ansprechen müssen, um den Maschinenstillstand herbeizuführen.

WARNUNG:

- Die Stopzeit (\(T \)) muss die Ansprechzeit aller Geräte und Steuerungen beinhalten, die zum Stoppen der Maschine reagieren müssen
- Wenn nicht alle Vorrichtungen mit einbezo- gen werden, wird der errechnete Sicherheitsab- stand (Ds oder S) zu kurz, was schwere Verletzungen oder Tod zur Folge haben kann.
- Beziehen Sie die Stopzonen aller relevanten Vorrichtungen und Bedienelemente in die Be- rechnungen mit ein.
- Gegebenenfalls muss jedes der beiden primären Kontrolelemente der Maschine (MPSE1 und MPSE2) die gefährliche Maschinenbewegung unabhängig vom Zustand des anderen Ele- ments sofort stoppen können. Diese beiden Maschinensteuerkanäle brauchen nicht identisch zu sein. Bei der Stopzeit der Maschine (Ts, zur Berechnung des Sicherheitsabstands) muss jedoch der langsamer der beiden Kanäle berücksichtigt werden.

EZ-SCREEN® 14/30 mm Sicherheits-Lichtvorhang

www.bannerengineering.com
Beispiele

Beispiel: US-Anwendungen, Typ

<table>
<thead>
<tr>
<th>Variablen</th>
<th>Definition</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>63 in pro Sekunde (die Handgeschwindigkeitskonstante gemäß OSHA)</td>
<td></td>
</tr>
<tr>
<td>Ts</td>
<td>0,32 (0,250 Sekunden sind vom Maschinenhersteller vorgegeben; plus 20 % Sicherheitsfaktor; plus 20 ms für die Ansprechzeit des Interface-Moduls IM-T-9A)</td>
<td></td>
</tr>
<tr>
<td>Tr</td>
<td>0,023 Sekunden (die angegebene Ansprechzeit eines SLS14-600 EZ-SCREEN)</td>
<td></td>
</tr>
<tr>
<td>Dpf</td>
<td>3 in</td>
<td></td>
</tr>
</tbody>
</table>

In unserem Beispiel wird ein 600-mm-System mit 14 mm Auflösung und eingeschalteter reduzierter Auflösung verwendet, so dass Dpf 3 Zoll beträgt. Die Ansprechzeit beträgt in diesem Beispiel 0,023 Sekunden.

Setzen Sie diese Zahlen wie folgt in die Formel ein:

\[D_s = K \times (T_s + T_r) + Dpf \]

\[D_s = 63 \times (0.32 + 0.023) + 3 = 24.6 \text{ in} \]

Installieren Sie den Sender und den Empfänger des EZ-SCREEN derart, dass sich kein Teil des Schutzfelds näher als 24,6 in an der nächstgelegenen Gefahrstelle der überwachten Maschine befindet.

Beispiel: Europäische Anwendungen, Modell

<table>
<thead>
<tr>
<th>Variablen</th>
<th>Definition</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1600 mm pro Sekunde</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0,343 (0,250 Sekunden vom Maschinenhersteller angegeben; plus 20 % Sicherheitsfaktor; plus 0,023 Sekunden (die angegebene Ansprechzeit des SLS14-800)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>8 \times (30 - 14) = 128 mm (14 mm Auflösung, reduzierte Auflösung EIN)</td>
<td></td>
</tr>
</tbody>
</table>

Setzen Sie diese Zahlen wie folgt in die Formel ein:

\[S = (K \times T) + C \]

\[S = (1600 \times 0.343) + 128 = 676.8 \text{ mm} \]

Installieren Sie den Sender und den Empfänger des EZ-SCREEN derart, dass sich kein Teil des Schutzfelds näher als 676,8 mm an der nächstgelegenen Gefahrstelle der überwachten Maschine befindet.

5.2.2 Reduzierung oder Beseitigung von Hintertretungsgefahren

Eine Hintertretungsgefahr ist mit Anwendungen verbunden, bei denen Personen eine Schutzeinrichtung passieren, wie zum Beispiel den EZ-SCREEN 14/30 mm Sicherheits-Lichtvorhang (durch den ein Stoppbefehl ausgegeben wird, um die Gefahr zu beseitigen) und in den überwachten Bereich eintreten können, zum Beispiel Bereichssicherungen. Dies kommt häufig bei Zugangs- und Bereichsschutzanwendungen vor. Folglich wird ihre Präsenz nicht mehr erfasst, und es besteht die Gefahr, dass die Maschine anläuft bzw. wiederanläuft, während sich die Person noch im Schutzfeld befindet.

Wenn Sicherheits-Lichtvorhänge verwendet werden, entstehen Hintertretungsgefahren gewöhnlich durch einen großen Sicherheitsabstand, der auf der Grundlage langer Stoppzeiten, hoher Mindest-Objektempfindlichkeiten, Übergreifen, Durchgreifen oder anderer Installationserwägungen berechnet wird. Ist der Abstand zwischen dem Schutzfeld und der Maschine bzw. der festen Schutzeinrichtung größer als 75 mm (3 Zoll), entsteht bereits eine Hintertretungsgefahr. Hintertretungsgefahren sollten, wenn möglich, stets beseitigt bzw. reduziert werden. Obwohl empfohlen wird, die Hintertretung komplett zu verhindern, kann dies aufgrund der Maschinenanordnung, den Fähigkeiten der Maschine oder anderer Anwendungserwägungen manchmal nicht möglich sein.

WARNUNG:
- Verwendung des Banner-Geräts für Zugangs- oder Bereichssicherungen
 - Die Nichtbeachtung dieser Warnhinweis kann zu schwerer Körperverletzung oder Tod führen.
 - Wird ein Banner-Gerät in einer Anwendung installiert, die zu einer Hintertretungsgefahr führt (z. B. Bereichssicherungen), müssen entweder das Banner-Gerät oder die primären Steuerelemente der zu überwachenden Maschine (MPSEs) infolge der Unterbrechung des Schutzfelds eine Verriegelung mit Wiederanlaufsperre bewirken.
 - Die Zurücksetzung dieses Verriegelungszustands kann nur durch Betätigung eines Reset-Schalters erreicht werden, der von den normalen Vorrichtungen zur Initiierung des Maschinenzyklus getrennt ist.

WARNUNG:
- Bereichssicherungsanwendungen
 - Die Nichtbeachtung dieser Warnhinweis kann zu schwerer Körperverletzung oder Tod führen.
 - Wenden Sie Lockout/Tagout-Verfahren (Verriegeln/Kennzeichnen) gemäß ANSI Z244.1 an oder verwenden Sie eine zusätzliche Schutzeinrichtung gemäß den Sicherheitsanforderungen in ANSI B11.19 oder anderen geltenden Normen, wenn eine Hintertretungsgefahr nicht beseitigt oder auf ein Risiko von akzeptablem Ausmaß gesenkt werden kann.

5.2.3 Reset-Schalterposition

Der Reset-Schalter muss an einer Position montiert werden, die die Anforderungen der nachstehenden Warnhinweise und Vorschriften erfüllt, Könnten Gefahrenbereiche von den Reset-Schaltern aus nicht eingesehen werden, so müssen zusätzliche Schutzvorrichtungen bereitgestellt werden. Der Schalter muss gegen zufällige oder unbeabsichtigte Betätigung geschützt werden (zum Beispiel durch Schutzringe oder -abdeckungen).

WARNUNG:
- Reset-Schalter ordnungsgemäß installieren
 - Eine unsachgemässe Installation von Reset-Schaltern kann zu schweren oder tödlichen Verletzungen führen.

Für alle Reset-Schalter gilt:
- Sie müssen sich außerhalb des überwachten Bereichs befinden.
- Ihre Position muss der den Schalter bedienenden Person während der Ausführung des Resets die volle, unbehinderte Sicht auf den gesamten überwachten Bereich gewähren.
- Sie müssen sich vom überwachten Bereich aus außer Reichweite befinden.
- Sie müssen vor unbefugter und unbeabsichtigter Betätigung geschützt sein (z. B. durch einen Schutzring oder eine Schutzabdeckung).

5.2.4 Zusätzliche Schutzeinrichtungen

Der EZ-SCREEN ist so zu positionieren, dass es für Personen nicht möglich ist, durch das Schutzfeld in die Gefahrstelle zu greifen, bevor die Maschine stillsteht.

WARNUNG:
- Die Gefahrstelle darf nur durch den Erfassungsbereich zugänglich sein.
- Eine unsachgemäße Installation des Systems könnte schwere oder tödliche Verletzungen zur Folge haben.
- Durch die Installation des EZ-SCREEN muss verhindert werden, dass Personen um, unter, über oder durch das Schutzfeld in den Gefahrenbereich greifen können, ohne erfasst zu werden.

5.2.5 Ausrichtung von Sender und Empfänger

Sender und Empfänger können auf vertikaler oder horizontaler Ebene oder in einem beliebigen Winkel dazwischen ausgerichtet werden, solange sie parallel zueinander ausgerichtet sind und ihre Kabelenden in dieselbe Richtung zeigen. Prüfen Sie, ob der Lichtvorhang sämtliche Zugänge zur Gefahrstelle komplett abdeckt, die nicht bereits durch eine feste Schutzeinrichtung oder durch eine zusätzliche Schutzeinrichtung geschützt sind.

WARNUNG:
- Systemkomponenten ordnungsgemäß installieren
- Wenn die Systemkomponenten falsch ausgerichtet werden, wird die Leistung des Systems beeinträchtigt. Das Ergebnis sind Überwachungslücken, die wiederum zu schweren oder tödlichen Verletzungen führen können.
- Installieren Sie die Systemkomponenten so, dass ihre entsprechenden Kabelenden in dieselbe Richtung zeigen.
5.2.6 Benachbarte reflektierende Oberflächen

WARNUNG:
- Das System nicht in der Nähe von reflektierenden Oberflächen installieren
- Das Schutzfeld darf sich nicht neben einer reflektierenden Oberfläche befinden. Führen Sie den Detektionsfunktionsstest entsprechend der Beschreibung in der Produktdokumentation durch, um derartige Reflexionen zu erkennen.

Eine reflektierende Oberfläche in der Nähe des Schutzfelds kann einen oder mehrere Strahlen um ein Objekt im Schutzfeld herum ablenken. Im schlimmsten Fall kann ein optischer Kurzschluss auftreten, aufgrund dessen ein Objekt unbe merkt durch das Schutzfeld gelangen kann.

Eine reflektierende Oberfläche kann auf glänzende Flächen oder auf Maschinenoberflächen, Werkstücke, Boden oder Wände von glänzender Farbe zurückzuführen sein. Von reflektierenden Oberflächen abgelenkte Strahlen können durch den Detektionsfunktionsstest und die regelmäßigen Prüfroutinen erkannt werden. Zur Beseitigung von problematischen Reflexionen:
- Ordnen Sie die Sensoren wenn möglich neu an, damit die Strahlen nicht die reflektierende(n) Fläche(n) treffen. Achten Sie dabei darauf, dass ein ausreichender Sicherheitsabstand beibehalten wird.
- Alternativ können Sie die glänzende Fläche übermalen, abdecken oder aufrauen, um ihr Reflexionsvermögen zu reduzieren.
Wo dies nicht möglich ist (z. B. bei einem glänzenden Werkstück oder Maschinenrahmen), ermitteln Sie die schlechtestmögliche Auflösung, die sich aus dem optischen Kurzschluss ergeben kann, und berechnen Sie die Formel für den Sicherheitsabstand (Mindestabstand) mithilfe des entsprechenden Eintrittstiefefaktors (Dpf oder C). Alternativ können Sie die Sensoren so montieren, dass die reflektierende Fläche vom Sichtfeld des Empfängers und/oder der Lichtausbreitung des Senders ausgeschlossen ist.

Wiederholen Sie den Detektionsfunktionstest (siehe Detektionsfunktionstest auf Seite 38), um zu überprüfen, ob die problematischen Reflexionen durch diese Veränderungen beseitigt wurden. Wenn das Werkstück besonders reflektierend ist und nahe an das Schutzfeld heran kommt, den Detektionsfunktionstest mit dem Werkstück an Ort und Stelle durchführen.

5.2.7 Verwendung von Umlenkspiegeln

Der EZ-SCREEN kann mit Umlenkspiegeln verwendet werden. Spiegel sind nicht bei Anwendungen erlaubt, bei denen sie Personal unbemerkt Zugang in den überwachten Bereich ermöglichen würden. Bei Verwendung von Glas-Umlenkspiegeln reduziert sich der angegebene Höchstabstand zwischen Sender und Empfänger um ca. 8 % pro Spiegel:

<table>
<thead>
<tr>
<th>Lichtvorhang-Serie</th>
<th>0 Spiegel</th>
<th>1 Spiegel</th>
<th>2 Spiegel</th>
<th>3 Spiegel</th>
<th>4 Spiegel</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 mm EZ-SCREEN® (SLS)</td>
<td>6 m</td>
<td>5,6 m</td>
<td>5,2 m</td>
<td>4,8 m</td>
<td>4,4 m</td>
</tr>
<tr>
<td>30 mm EZ-SCREEN® (SLS)</td>
<td>18 m</td>
<td>16,8 m</td>
<td>15,3 m</td>
<td>14,3 m</td>
<td>13,1 m</td>
</tr>
<tr>
<td>EZ-SCREEN® LP (SLP)</td>
<td>7 m</td>
<td>6,5 m</td>
<td>6,0 m</td>
<td>5,5 m</td>
<td>5,1 m</td>
</tr>
<tr>
<td>EZ-SCREEN® LP Basic (SLPVA)</td>
<td>4 m</td>
<td>3,7 m</td>
<td>3,4 m</td>
<td>3,1 m</td>
<td>2,8 m</td>
</tr>
<tr>
<td>EZ-SCREEN® LS (SLL)</td>
<td>12 m</td>
<td>11 m (36 ft)</td>
<td>10,1 m</td>
<td>9,3 m</td>
<td>8,6 m</td>
</tr>
<tr>
<td>EZ-SCREEN® LS Basic (SLLV)</td>
<td>8 m</td>
<td>7,4 m</td>
<td>6,8 m</td>
<td>6,2 m</td>
<td>5,7 m</td>
</tr>
<tr>
<td>EZ-SCREEN® Typ 2 (LS2)</td>
<td>15 m</td>
<td>13,8 m</td>
<td>12,7 m</td>
<td>11,7 m</td>
<td>10,8 m</td>
</tr>
</tbody>
</table>

Bei Verwendung von Spiegeln muss die Differenz zwischen dem Einfallswinkel vom Sender zum Spiegel und vom Spiegel zum Empfänger 45° bis 120° betragen (siehe Abbildung 8 auf Seite 28). Bei einem spitzen Winkel kann ein Objekt im Lichtvorhang Lichtstrahlen zum Empfänger ablenken, wodurch das Objekt nicht mehr erfasst werden kann (d. h. „falsches Proxing“). Winkel von mehr als 120° machen die Ausrichtung schwierig und das System anfälliger für optische Kurzschlüsse.
WARNUNG:

- Installation als Reflexionslichtschranke
- Bei Nichtbeachtung dieser Hinweise können eine unzuverlässige Erfassung und schwere oder tödliche Verletzungen die Folge sein.
- Die Sender und Empfänger dürfen nicht als Reflexionslichtschranken mit einem Einfallswinkel unter 45° installiert werden. Sender und Empfänger müssen im geeigneten Winkel installiert werden.

![Abbildung 8. Verwendung der Sensoren des EZ-SCREEN als Reflexionslichtschranken](image_url)

5.2.8 Installation mehrerer Systeme

Wenn mindestens zwei Sender-Empfänger-Paare des EZ-SCREEN nebeneinander angeordnet sind, kann zwischen den Systemen optisches Übersprechen auftreten. Stellen Sie Sender und Empfänger abwechselnd auf (siehe Abbildung 9 auf Seite 29), oder wechseln Sie die Scan-Codes ab, um optisches Übersprechen zu minimieren.

Als weitere Maßnahme zur Vermeidung von Übersprechen enthalten die Sensoren zwei Scan-Codes zur Auswahl. Ein Empfänger, bei dem ein Scan-Code eingestellt ist, kann nicht auf einen Sender ansprechen, bei dem ein anderer Code eingestellt ist.
5.3 Montage des Senders und Empfängers

Sender-Empfänger-Paare mit einer Auflösung von 14 mm (0,55 in) können zwischen 0,1 m und 6 m (4 in bis 20 ft) voneinander entfernt sein. Sender-Empfänger-Paare mit einer Auflösung von 30 mm (1,18 in) können zwischen 0,1 m und 18 m (4 in bis 60 ft) voneinander entfernt sein. Der Höchstabstand zwischen einem Sender und seinem Empfänger reduziert sich, wenn Umlenkspiegel verwendet werden (siehe Verwendung von Umlenkspiegeln auf Seite 27). Die im Lieferumfang enthaltenen Montagewinkel ermöglichen bei Montage an den Sensor-Endkappen eine Drehung von ±30°.
Von einem gemeinsamen Bezugspunkt ausgehend, wobei der in Berechnung des Sicherheitsabstands (Mindestabstand) auf Seite 20 berechnete Mindestsicherheitsabstand beachtet wird, nehmen Sie die nötigen Messungen vor. Richten Sie den Sender und den Empfänger so aus, dass sie in derselben Ebene und ihre Mittelpunkte direkt einander gegenüber liegen.

Anmerkung: Die Anschlussenden beider Sensoren müssen in dieselbe Richtung weisen (siehe Ausrichtung von Sender und Empfänger auf Seite 25).

Montieren Sie die Montagewinkel für Sender und Empfänger mit den im Lieferumfang enthaltenen M6-Schrauben und Muttern oder mit dem vom Anwender gestellten Zubehör.

Montieren Sie den Sender und den Empfänger in ihren Montagewinkeln; richten Sie dabei die Messbereiche so aus, dass sie direkt einander gegenüber liegen. Messen Sie zur Kontrolle der mechanischen Ausrichtung von Sender und Empfänger von einer Bezugsebene (z. B. einem ebenen Fußboden im Gebäude) ausgehend die Distanz zu sich entsprechenden Punkten an Sender und Empfänger. Stellen Sie die mechanische Ausrichtung mit einer Wasserwaage, einem Lot oder dem optionalen LAT-1 Laserausrichtwerkzeug her (siehe Zubehör auf Seite 82) bzw. prüfen Sie damit die diagonalen Entfernungen zwischen den Sensoren. Die endgültige Ausrichtung wird in Überprüfung vor der erstmaligen Inbetriebnahme auf Seite 33 erläutert.

Stützwinkel müssen mit längeren Sensoren verwendet werden, wenn sie Stößen oder Schwingungen ausgesetzt werden. Die Sensoren können dabei aufgrund ihrer Konstruktion auf einer Länge von 900 mm (35,43 in) ohne zusätzliche Stütze zwischen den Montagewinkeln angebracht werden. Sensoren mit einer Länge von mindestens 1050 mm (45,33 in) werden mit einem Stützwinkel geliefert, der je nach Bedarf mit den standardmäßigen Montagewinkeln für die Sensoren verwendet werden kann.

1. Befestigen Sie den Stützwinkel an der Montagefläche, wenn die Montagewinkel für die Sensoren angebracht werden.
2. Bringen Sie die Befestigungsklemme mit den mitgelieferten M5-Schrauben und T-Muttern an beiden Gehäuseschlitzen an.
3. Nachdem der Sensor an den Montagewinkeln für die Sensoren montiert worden ist, befestigen Sie die Befestigungsklemme mit der mitgelieferten M5-Schraube am Stützwinkel.

Montagewinkel für die Sensoren (im Lieferumfang jedes Senders und Empfängers enthalten)

Seitliche Montage (zwei Montagewinkel können ersatzweise verwendet werden)

Montage an Sensoren

Mittlerer Drehwinkel (im Lieferumfang von Sendern und Empfängern ab 1050 mm enthalten)

Abbildung 10. Montagewinkel für Sensoren

Anmerkung:
- Siehe Abmessungen auf Seite 12 zu Abmessungen der Montagewinkel.
5.4 Montage und mechanische Ausrichtung der Sensoren

Folgendes überprüfen:
- Sender und Empfänger stehen einander direkt gegenüber.
- Kein Objekt unterbricht das Schutzfeld.
- Das Schutzfeld für jeden Sensor entspricht dem gleichen Abstand von einer gemeinsamen Bezugsebene aus.
- Sender und Empfänger liegen auf derselben Ebene und sind waagerecht/lotrecht und rechtwinklig zueinander (vertikal, horizontal oder im selben Winkel geneigt, und nicht von vorn nach hinten oder von Seite zu Seite verkippt).

Abbildung 11. Falsche Sensorausrichtung

Schräge oder horizontale Montage – Folgendes prüfen:
- Abstand X ist beim Sender und beim Empfänger gleich.
- Abstand Y ist beim Sender und beim Empfänger gleich.
- Abstand Z ist beim Sender und Empfänger von parallelen Oberflächen aus gleich.
- Die vertikale Sensorfläche (Messbereich) ist waagerecht/lotrecht.
- Das Schutzfeld ist rechtwinklig. Prüfen Sie die diagonalen Messungen, falls möglich; siehe „Vertikale Montage“ rechts.

Vertikale Montage – Folgendes prüfen:
- Abstand X ist beim Sender und beim Empfänger gleich.
- Beide Sensoren sind waagerecht/lotrecht (Seite und Stirnfläche kontrollieren).
- Das Schutzfeld ist rechtwinklig. Kontrollieren Sie nach Möglichkeit die diagonalen Messungen (Diagonale A = Diagonale B).

5.5 Montage des Reset-Schalters

Montieren Sie den Reset-Schalter an einer Stelle, die der Warnung in Reset-Schalterposition auf Seite 24 entspricht. Siehe Elektrische Anschlüsse vor der Inbetriebnahme auf Seite 32 für den elektrischen Anschluss.

5.6 Verlegung der Anschlussleitungen

Sender und Empfänger werden mit Niederspannungsleitungen verdrahtet. Bei Verlegung der Sensorkabel neben Stromkabeln, Motor- bzw. Servokabeln oder anderen Hochspannungskabeln können im EZ-SCREEN-System Störungen verursacht werden. Daher empfiehlt es sich und ist unter Umständen gesetzlich vorgeschrieben, die Sender- und Empfän-
gerkabel von Hochspannungskabeln zu isolieren, die Kabel nicht in der Nähe von „störanfälligen“ Kabeln zu verlegen und einen guten Masseanschluss herzustellen.

Die Leitungsisolierung der Sensorkabel und etwaiger anderer Anschlussteilungen muss Temperaturen von mindestens 90 °C (194 °F) standhalten. Darüber hinaus müssen die Schnellanschlusskabel und alle Anschlussteilungen die in der folgenden Tabelle aufgeführten Spezifikationen erfüllen:

Tabelle 2. Maximale Maschinenanschluss-Kabellänge bei Gesamtstromentnahme (einschließlich beider OSSD-Lasten)

<table>
<thead>
<tr>
<th>Leitung</th>
<th>0,5 A</th>
<th>0,75 A</th>
<th>1,0 A</th>
<th>1,25 A</th>
<th>1,5 A</th>
<th>1,75 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 AWG</td>
<td>114,3 m (375 ft)</td>
<td>76,2 m (250 ft)</td>
<td>57,3 m (188 ft)</td>
<td>45,1 m (148 ft)</td>
<td>38,1 m (125 ft)</td>
<td>33,2 m (109 ft)</td>
</tr>
<tr>
<td>20 AWG</td>
<td>73,1 m (240 ft)</td>
<td>48,8 m (160 ft)</td>
<td>36,6 m (120 ft)</td>
<td>30,0 m (95 ft)</td>
<td>24,4 m (80 ft)</td>
<td>21,3 m (70 ft)</td>
</tr>
<tr>
<td>22 AWG</td>
<td>45,7 m (150 ft)</td>
<td>30,5 m (100 ft)</td>
<td>22,9 m (75 ft)</td>
<td>18,0 m (59 ft)</td>
<td>15,2 m (50 ft)</td>
<td>13,4 m (44 ft)</td>
</tr>
</tbody>
</table>

Anmerkung: Mit der Angabe der maximalen Kabellängen soll sichergestellt werden, dass das EZ-SCREEN-System bei einer Eingangsspannung von +24 V DC – 15 % mit der richtigen Leistung versorgt wird.

5.7 Elektrische Anschlüsse vor der Inbetriebnahme

WARNUNG:
- Gefahr eines elektrischen Schlags
- Wenn diese Anweisungen nicht befolgt werden, können schwere oder tödliche Verletzungen die Folge sein.
- Trennen Sie die Stromversorgung oder schalten Sie sie aus, bevor Sie das Gerät installieren, entfernen oder warten.

Anschlussleitung für Sender

Die Sender des EZ-SCREEN haben eine 8-polige Anschlussleitung, aber nicht alle Leiter werden verwendet. Die nicht verwendeten Leiter ermöglichen einen parallelen Anschluss (farbenweise) an das Empfängerkabel und ermöglichen dadurch die Austauschbarkeit der Sensoren (auch als „Sensortausch“ bezeichnet); jeder Sensor kann mit jedem Anschluss der Leitung verbunden werden. Eine solche Konfiguration ist nicht nur eine vergleichbare Verdrahtung, sondern sie ist auch vorteilhaft bei der Installation, Verdrahtung und Fehlerbehebung.

Sender mit der optionalen TEST-Funktion (Endung Q5 an der Typenbezeichnung) verwenden ein 5-poliges Kabel. Suchen Sie den schwarzen und den weißen Leiter am Kabelende. Wenn der Testeingang verwendet wird, verbinden Sie die Leitenden vorübergehend miteinander (aber zu diesem Zeitpunkt nicht mit einem externen Kontakt). Wenn der Testeingang nicht verwendet wird, verbinden Sie den schwarzen und den weißen Leiter des Senderkabels miteinander und schließen Sie die ordnungsgemäß ab (z. B. mit der mitgelieferten Leitungsmutter).

QDE-D-Kabel, siehe
Anschlussleitung für Empfänger

Zu diesem Zeitpunkt dürfen noch keine Kabel mit den Steuerschaltungen der Maschine (d. h. den OSSD-Ausgängen) verbunden werden. Für die Netzeinschaltung und die Prüfung vor der Inbetriebnahme muss ein Schließerkontakt für EDM konfiguriert werden. Suchen Sie den orangenen und den orange-schwarzen Leiter (Pins 2 und 3) und schließen Sie die Enden der Leiter vorübergehend aneinander an (aber nicht an die Maschine zu diesem Zeitpunkt). Treffen Sie Sicherheitsvorkehrungen, um zu verhindern, dass die Leiter gegen Masse oder gegen andere Energiequellen kurzgeschlossen werden (z. B. durch den Abschluss mit der mitgelieferten Leitungsmutter). Die endgültige EDM-Verdrahtung erfolgt später.

Sofern verwendet, verbinden Sie den externen Reset-Schalter mit dem (violett)en Reset-Leiter am Empfängerkabel und mit 24 V DC (siehe Allgemeine Schaltpläne auf Seite 45). Beachten Sie die Warnung in Reset-Schalterposition auf Seite 24 über die physische Position des Reset-Schalters. Der Reset-Schalter muss ein Schließerschalter sein, der ca. 1/4 Sekunde lang geschlossen gehalten wird, jedoch nicht länger als 2 Sekunden, und der danach wieder geöffnet wird, um den Reset herbeizuführen. Der Schalter muss ein Schaltvermögen von 10 V DC bis 30 V DC bei 30 mA aufweisen.

5.7.1 Optionen für die Senderverdrahtung

Ein EZ-SCREEN-Sender mit 8-poligem Anschluss kann entweder an seine eigene Stromversorgung oder an das jeweils gleichfarbige Kabel des Empfangers angeschlossen werden. Der Anschluss an jeweils gleichfarbige Kabel ermöglicht das Tauschen der Positionen von Sender und Empfänger ohne Umverdrahtung.

Ein EZ-SCREEN-Sender mit einem 5-poligen Stecker und Testfunktion ist nicht für den Anschluss an das jeweils gleichfarbige Kabel geeignet.

5.8 Überprüfung vor der erstmaligen Inbetriebnahme

Die Überprüfung vor der erstmaligen Inbetriebnahme muss von einer qualifizierten Person durchgeführt werden. Vor der Überprüfung muss das System erst konfiguriert werden, und die Komponenten müssen angeschlossen werden.

Die Überprüfung wird zu folgenden Zwecken durchgeführt:

• Um die korrekte erstmalige Installation des Systems zu garantieren
• Um die korrekte Systemfunktion zu gewährleisten, wenn Wartungsarbeiten oder Änderungen am System oder an der durch das System überwachten Anlage vorgenommen werden.

5.8.1 Konfigurieren des Systems für die Inbetriebnahme

Vergewissern Sie sich, dass der Testeingang überbrückt ist (falls verwendet) und das System auf die Werkseinstellungen für die Überprüfung vor Inbetriebnahme und die optische Ausrichtung eingestellt ist. (Die Werkseinstellungen gelten für Schaltausgang, Zweikanal-EDM, reduzierte Auflösung AUS und Scancode 1.)

Für die Überprüfung vor der Inbetriebnahme muss das EZ-SCREEN-System ohne Spannungsversorgung zur überwachten Maschine geprüft werden. Die letzten Anschlüsse zu der überwachten Maschine dürfen erst nach der Prüfung vor Inbetriebnahme verbunden werden. Hierfür sind möglicherweise Lockout/Tagout-Verfahren (Verriegelung/Kennzeichnung) erforderlich (siehe OSHA 1910.147, ANSI Z244-1 oder die entsprechende Norm zur Steuerung gefährlicher Energie). Diese Anschlüsse werden erst verbunden, nachdem die Prüfroutine vor erstmaliger Inbetriebnahme erfolgreich ausgeführt wurde.

Folgendes überprüfen:

• ob die Versorgung von der überwachten Maschine, ihren Steuerelementen oder Austreibern getrennt wurde (bzw. dafür nicht verfügbar ist); und
• dass der Maschinensteuerkreis oder das Interface-Modul zu diesem Zeitpunkt nicht an die OSSD-Ausgänge angeschlossen ist (dauerhafte Anschlüsse werden später hergestellt); und
• ob EDM für „Keine Überwachung“ konfiguriert ist (siehe Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41).

5.8.2 Erstmaliger Hochlauf

3. Prüfen Sie, ob die Versorgung vom EZ-SCREEN-System und von der überwachten Maschine getrennt ist, und versichern Sie sich, dass die OSSD-Sicherheitsausgänge nicht angeschlossen sind.
4. Entfernen Sie alle Hindernisse vom Lichtvorhang.
5. Lassen Sie die Stromversorgung der überwachten Maschine ausgeschaltet, verbinden Sie den Anschluss an die Stromversorgung und den Masseanschluss bei den Kabeln von Sender und Empfänger (siehe Allgemeine Schaltpläne auf Seite 45).

- **Sperrzustand** (Sender oder Empfänger): Die Statusanzeige blinkt einfach rot, und die Zonen- und die Reset-Anzeige des Empfängers sind ausgeschaltet. Siehe Fehlerbehebung auf Seite 77 für Diagnoseinformationen.
- **Standard-Betriebsmodus** (Sender): Die Statusanzeige leuchtet konstant grün.
- **Testmodus** (nur 5-polige Sender): Die Systemstatusanzeige blinkt grün (Testeingang offen).
- **Verriegelungszustand des Empfängers, alle optischen Strahlen sind frei**: Die rote Statusanzeige des Empfängers leuchtet und die grüne Zonenanzeige leuchtet. Wenn der Empfänger für den Verriegelungsausgang konfiguriert ist, schalten sich die Ausgänge nur ein, wenn alle Lichtstrahlen frei sind und ein manueller Reset ausgeführt wurde. Wenn eine Reset-Routine einen Freizustand (RUN) bewirken kann, optimieren Sie die Ausrichtung, wie im nächsten Kapitel beschrieben. Wenn sich ein Freizustand (RUN) nicht erreichen lässt, siehe unten unter „Blockierter Zustand“.
- **Blockierter Zustand** (Empfänger): Die rote Statusanzeige leuchtet, die gelbe Reset-Anzeige leuchtet, eine oder mehrere rote Zonenanzeigen leuchten und geben die Position der blockierten Strahlen an, und die Anzahl der blockierten Strahlen wird angezeigt. Machen Sie weiter bei Optische Ausrichtung auf Seite 34.

Anmerkung: Wenn Strahl 1 blockiert ist, leuchtet die Zonenanzeige 1 rot, und alle anderen Zonenanzeigen sind ausgeschaltet. Strahl 1 dient für das Synchronisierungssignal.

Anmerkung: Ist der Testeingang offen, zeigt das dreistellige Diagnose-Display die Gesamtanzahl aller Strahlen im System (minus einen) an, und alle Zonenanzeigen leuchten rot.

5.8.3 Optische Ausrichtung

WARNUNG:
- **Gefahrenexposition**
- Wenn diese Anweisungen nicht befolgt werden, können schwere oder tödliche Verletzungen die Folge sein.
- Vergewissern Sie sich, dass keine Personen Gefahren ausgesetzt werden, wenn sich die Ausgänge am Ausgangssignal-Schaltergerät (OSSD) beim Ausrichten von Sender und Empfänger einschalten.

1. Sensormontage prüfen (siehe Montage des Senders und Empfängers auf Seite 29).
2. Prüfen Sie die optimale Ausrichtung und passen Sie dazu die Sensordrehung bei eingeschaltetem System an:
a. Prüfen Sie, ob Sender und Empfänger rechtwinklig zueinander zeigen. Ermitteln Sie die Richtung, in die der Sender zeigt, mithilfe eines Gegenstands mit gerader Kante (z. B. einer Wasserwaage). Die Stirnseite des Sensors muss senkrecht zur optischen Achse liegen.

b. Schalten Sie die Stromversorgung für den Sender und den Empfänger ein. Wenn der Strahl von Kanal 1 nicht ausgerichtet ist, leuchten die Anzeigen für Status und für Zone 1 rot, und die Diagnoseanzeige zeigt „CH1“ an. Die Zonenanzeigen 2–8 sind ausgeschaltet.

c. Wenn die grüne Statusanzeige und die gelbe Reset-Anzeige leuchten, fahren Sie mit dem nächsten Schritt fort. Anderenfalls drehen Sie jeden Sensor (jeweils einzeln) nach links und nach rechts, bis die grüne Statusanzeige leuchtet. (Wenn der Sensor zu weit gedreht wird, schaltet sich die rote Statusanzeige ein.) Je mehr Strahlen ausgerichtet sind, desto mehr Zonenanzeigen wechseln von Rot zu Grün, und die angezeigte Zahl der blockierten Strahlen nimmt ab.

Anmerkung: Wenn der Testeingang des Senders geöffnet ist, zeigt das 7-teilige Display die Gesamtanzahl der Strahlen im System (minus 1) an, und alle Zonenanzeigen sind rot (außer bei 10-Strahlen-Systemen, bei denen die Anzeige für Zone 1 grün ist).

Verwenden Sie in Situationen, bei denen die Ausrichtung schwierig ist, ein LAT-1-SS Laserausrichtwerkzeug, das einen sichtbaren roten Punkt entlang der optischen Achse des Sensors erzeugt, zur Unterstützung oder Überprüfung der Ausrichtung.
5.8.4 Optische Ausrichtung bei Verwendung von Spiegeln

EZ-SCREEN-Sensoren können zusammen mit Umlenkspiegeln verwendet werden, um einen Bereich von mehreren Seiten aus zu überwachen. Die Rückflächen-Glasspiegel vom Typ MSM... und SSM... haben einen spezifizierten Wirkungsgrad von 85 %. Daher verringern sich die Funktionsreserve und die Erfassungsreichweite bei der Verwendung von Umlenkspiegeln; siehe Verwendung von Umlenkspiegeln auf Seite 27.

Bei allen Einstellungen darf immer nur eine Person jeweils eine Komponente einstellen.

Prüfen Sie zusätzlich zum Standardverfahren für die optische Ausrichtung Folgendes:

1. Sender, Empfänger und alle Spiegel sind eben und lotrecht.
3. Die Spiegelfläche ist oberhalb und unterhalb des Schutzfelds gleich groß, damit Lichtstrahlen nicht unter- oder oberhalb des Spiegels passieren können.

Abbildung 12. Optische Ausrichtung mit dem LAT-1-SS

Abbildung 13. Ausrichtung der Umlenkspiegel

5.8.5 Reduzierte Auflösung/Flexible Ausblendung

Es werden mehrere „Löcher“ erzeugt, in denen 14-mm-Systeme ein 30-mm-Objekt erfassen und ein 8,5-mm-Objekt ignorieren. In ähnlicher Weise erfassen 30-mm-Systeme ein 60-mm-Objekt und ignorieren ein 17-mm-Objekt. Siehe Konfiguration des DIP-Schalters. Während des Betriebs blinkt die Statusanzeige grün, wenn die reduzierte Auflösung aktiviert ist.
Bei Anwendungen mit reduzierter Auflösung erhöht sich wegen des größeren Eintrittstiefefaktors \((Dpf) \) immer der Sicherheitsabstand (Mindestabstand). Berechnen Sie in beiden Fällen den Sicherheitsabstand (siehe Berechnung des Sicherheitsabstands (Mindestabstand) auf Seite 20).

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Einstellung für Reduzierte Auflösung</th>
<th>Maximalgröße von nicht erfassten Objekten</th>
<th>Resultierende Auflösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-mm-Auflösung</td>
<td>Aus (Nicht zutreffend)</td>
<td>14 mm (0,55 in)</td>
<td></td>
</tr>
<tr>
<td>30-mm-Auflösung</td>
<td>Ein (2 Strahlen) 8,5 mm (0,34 in)</td>
<td>30 mm (1,18 in)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ein (2 Strahlen) 17 mm (0,67 in)</td>
<td>60 mm (2,36 in)</td>
<td></td>
</tr>
</tbody>
</table>

WARNUNG:
- Die reduzierte Auflösung und die feste Ausblendung sollten nur verwendet werden, wenn sie wirklich notwendig sind.
- Wenn diese Anweisungen nicht befolgt werden, können schwere oder tödliche Verletzungen die Folge sein.
- Eventuelle Lücken im Schutzfeld müssen entweder vom ausgeblendeten Objekt komplett geschlossen werden, oder der Sicherheitsabstand (Mindestabstand) muss erhöht werden, damit der größeren Auflösung Rechnung getragen wird.

5.8.6 Feste Ausblendung

Konfigurieren der festen Ausblendung

1. Bewegen Sie den zweiten und dritten DIP-Schalter (den ersten RR und T/L) aus dem Normalbetrieb oder einem Ausschaltzustand heraus jeweils nach links (Stellung T und RR).

 Anmerkung: Für die Konfiguration der festen Ausblendung gilt ein Zeitlimit von 10 Minuten. Wird dieser Zeitrahmen überschritten, tritt eine Sperre ein und das Verfahren muss von Neuem begonnen werden.

3. Der Empfänger sollte sich jetzt entweder in einem Sperrzustand befinden, oder die Stromversorgung ist immer noch aus.
 - Wenn die Stromversorgung aus ist: Schalten Sie sie ein.
 - Wenn sich das System in einem Sperrzustand befindet: Führen Sie eine gültige Reset-Abfolge aus (schließen Sie den Reset-Schalter 0,25 bis 2 Sekunden lang und öffnen Sie ihn danach wieder).

Die Konfiguration der festen Ausblendung wird durch Folgendes angezeigt:
- Die Anzeige wechselt zwischen „PFA“ und der Anzahl der blockierten Strahlen („0“, wenn alle Strahlen frei sind). (PFA = Programmierte feste Ausblendung aktiv)
4. Positionieren Sie das oder die auszublendenden Objekte. Wenn die Strahlen blockiert sind, wechselt die 7-teilige Anzeige zwischen „PFA“ und der Anzahl der blockierten Strahlen. Die Zonenanzeigen bleiben aktiv und geben an, an welcher Stelle die Strahlen blockiert wurden.

5. Um die ausgeblendeten Strahlen einzulernen, konfigurieren Sie die DIP-Schalter wieder für den Normalbetrieb. Vergewissern Sie sich, dass das Schutzfeld nur von Objekten, die ausgeblichet werden sollen, unterbrochen wird. Wird ein Objekt nach dem Einlernen verschoben oder entfernt, tritt ein Sperrzustand ein.

Anzeigen auf dem Empfänger:
- Anzeige auf dem Display: PFC (Program Fixed Blanking Complete = Programmierung der festen Ausblendung abgeschlossen) ein
- Die Zonenanzeigen blinken an der ungefähren Position des programmierten, fest ausgeblendeten Bereichs.
- Reset-Anzeige blinkt einfach gelb
- Statusanzeige blinkt einfach rot

6. Führen Sie eine gültige Reset-Sequenz durch, oder schalten Sie die Stromversorgung zum System aus und wieder ein.

7. Zum Deaktivieren der festen Ausblendung gehen Sie genauso vor, aber entfernen Sie in Schritt 4 alle Objekte, die nicht ausgeblendet werden sollen.

5.8.7 Detektionsfunktionstest

Anmerkung: Kaskadensysteme – Beim Test eines Kaskadensystems muss jeder Lichtvorhang einzeln getestet werden, wobei die Statusanzeige am ersten Empfänger in der Kaskade überwacht wird.

Tabelle 3. Geeignete Testobjekte für den Detektionsfunktionstest

<table>
<thead>
<tr>
<th>Reduzierte Auflösung</th>
<th>Ausführungen mit 14-mm-Auflösung</th>
<th>Ausführungen mit 30-mm-Auflösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUS</td>
<td>ø 14 mm (0,55 in) Modell STP-13</td>
<td>ø 30 mm (1,18 in) Modell STP-14</td>
</tr>
<tr>
<td>EIN (2 Strahlen)</td>
<td>ø 30 mm (1,18 in) Modell STP-14</td>
<td>ø 60 mm (2,36 in) Modell STP-15</td>
</tr>
</tbody>
</table>

1. Wählen Sie das geeignete Testobjekt aus, das dem Empfänger beiliegt.
2. Vergewissern Sie sich, dass sich das System im RUN-Modus befindet, die grüne Statusanzeige leuchtet, alle Zonenanzeigen grün leuchten und die gelbe Statusanzeige leuchtet.
3. Führen Sie das spezifizierte Testobjekt an drei separaten Stellen durch das Schutzfeld: neben dem Sender, neben dem Empfänger und in der Mitte zwischen Sender und Empfänger.

- Betrieb mit Schaltausgang – Die Statusanzeige muss durchgehend rot leuchten, solange sich das Testobjekt im Schutzfeld befindet. Anderenfalls hat die Anlage den Detektionsfunktionstest nicht bestanden.
Betrieb des Verriegelungsausgangs: Die Statusanzeige muss zu Rot wechseln und rot weiterleuchten. Die gelbe Reset-Anzeige muss weiterleuchten. Wenn die Reset-Anzeige zu irgendeinem Zeitpunkt zu blinken beginnt, während das Testobjekt das Schutzfeld unterbricht, hat die Anlage den Detektionsfunktionstest nicht bestanden.

Wenn alle Zoneanzeigen zu Grün wechseln oder der Position des Testobjekts nicht folgen, während es sich im Schutzfeld befindet, hat die Installation den Detektionsfunktionstest nicht bestanden. Überprüfen Sie, ob die Sensoren richtig ausgerichtet sind, ob reflektierende Oberflächen vorhanden sind und ob durch die Verwendung der Ausblendung ungeschützte Bereiche erzeugt worden sind. Gehen Sie nicht zum nächsten Schritt über, bevor diese Situation behoben worden ist.

Wenn das Testobjekt aus dem Schutzfeld entfernt wird, muss im Betrieb mit Schaltausgang die Statusanzeige grün leuchten (oder grün blinken, wenn die reduzierte Auflösung aktiviert ist). Im Betrieb mit Verriegelungsausgang bleibt die Statusanzeige rot, bis ein manueller Reset durchgeführt wird (die gelbe Reset-Anzeige blinkt).

WARNUNG:
- Fehler beim Detektionsfunktionstest
- Wenn das System nicht ordnungsgemäß auf den Detektionsfunktionstest anspricht, muss von der Benutzung des Systems abgesehen werden.

5.9 Elektrische Anschlüsse an die überwachte Maschine

Vergewissern Sie sich, dass die Spannungsversorgung vom EZ-SCREEN und von der überwachten Maschine getrennt wurde. Verbinden Sie die permanenten elektrischen Anschlüsse entsprechend den Beschreibungen (OSSD-Ausgangsanschlüsse auf Seite 40 und FSD-Anschlüsse auf Seite 40) je nach den Anforderungen der einzelnen Anwendungen.

Hierfür sind möglicherweise Lockout/Tagout-Verfahren (Verriegelung/Kennzeichnung) erforderlich (siehe OSHA 1910.147, ANSI Z244-1, ISO 14118 oder die entsprechende Norm zur Steuerung gefährlicher Energie). Beachten Sie die geltenden Normen und Gesetze für elektrische Installationen und Verdrahtungen, z. B. die Normen NEC, NFPA79 bzw. IEC 60204-1.

Stromversorgung und externe Geräteüberwachung (EDM) sollten bereits angeschlossen worden sein. Der EZ-SCREEN muss außerdem ausgerichtet worden sein und die Prüfung vor erstmaliger Inbetriebnahme entsprechend bestanden haben (siehe Beschreibung in Überprüfung vor der erstmaligen Inbetriebnahme auf Seite 33).

Es müssen noch folgende Anschlüsse hergestellt oder überprüft werden:
- OSSD-Ausgänge (siehe OSSD-Ausgangsanschlüsse auf Seite 40)
- FSD-Anschluss (siehe FSD-Anschlüsse auf Seite 40)
- MPSE/EDM (siehe Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41)
- Externer Testeingang
WARNUNG:
- Gefahr eines elektrischen Schlags
- Gehen Sie äußerst vorsichtig vor, um einen Stromschlag zu vermeiden. Schwere Verletzungen oder Tod könnten sonst die Folge sein.
- Trennen Sie immer die Stromversorgung vom Sicherheitssystem (z. B. Gerät, Modul, Anschlüssen usw.) und/oder der überwachten Maschine, bevor Anschlüsse verbunden oder Komponenten ausgetauscht werden. Es können Lockout/Tagout-Verfahren (Verriegelung/Kennzeichnung) erforderlich sein. Siehe OSHA 29CFR1910.147, ANSI Z244-1 oder die geltende Norm für die Steuerung gefährlicher Energie.

5.9.1 OSSD-Ausgangsanschlüsse
Beide Ausgangssignal-Schaltgeräte (OSSDs) müssen so an die Maschinensteuerung angeschlossen werden, dass das Sicherheitssicherungssystem der Maschine den Stromkreis oder die Stromversorgung zu den primären Steuerelementen der Maschine (MPSEs) unterbricht und einen ungefährlichen Zustand herbeiführt.

FSDs (Endschaltgeräte) bewirken dies gewöhnlich, wenn die OSSDs in einen AUS-Zustand wechseln. Bevor OSSD-Ausgangsanschlüsse hergestellt werden und der EZ-SCREEN an die Maschine angeschlossen wird, sind die Ausgangsspezifikationen in den Spezifikationen für den Empfänger die folgenden Warnhinweise zu beachten.

WARNUNG:
- Anschluss beider Ausgangssignal-Schaltgeräte (OSSDs)
- Wenn diese Anweisungen nicht befolgt werden, können schwere oder tödliche Verletzungen die Folge sein.
- Sofern nicht dieselbe Schutzstufe gewährleistet ist, dürfen Sie Zwischengeräte (SPS, PES oder PC), die ausfallen könnten, zwischen den von ihnen geschalteten Ausgängen des Sicherheitsmodules und dem Haupt-Stoppsteuerelement niemals so anschließen, dass ein Versagen zum Verlust des Sicherheitsabschaltungsbeaufsichtigung oder einem Aussetzen, Außerkraftsetzen oder Umgehen der Schutzfunktion ermöglicht.
- Schließen Sie die Sicherheitsausgänge so an die Maschinensteuerung an, dass das sicherheitsrelevante Steuersystem der Maschine den Schaltkreis zu den primären Steuerelementen der Maschine unterbricht, um einen sicheren Zustand herbeizuführen.

WARNUNG:
- OSSD-Anschluss
- Wenn die OSSD-Ausgänge nicht richtig an die überwachte Maschine angeschlossen werden, kann es zu schweren oder tödlichen Verletzungen kommen.
- Zur Sicherstellung des ordnungsgemäßen Betriebs müssen die Ausgangsparameter des Banner-Geräts und die Eingangssparameter der Maschine beim Anschließen der OSSD-Ausgänge des Banner-Geräts an die Maschinenleitungen berücksichtigt werden. Konzipieren Sie die Steuerschaltung der Maschine so, dass alle folgenden Punkte zutreffen:

Der maximale Lastwiderstandswert wird nicht überschritten.
Die maximal spezifizierte Spannung des OSSD im AUS-Zustand führt nicht zu einem EIN-Zustand.

5.9.2 FSD-Anschlüsse

Je nach Anwendung kann der Einsatz von FSDs die Regelung von Spannungs- und Stromwerten vereinfachen, die von den OSSD-Ausgängen des EZ-SCREEN abweichen. FSDs können auch zur Kontrolle zusätzlicher Gefahren benutzt werden, indem sie zur Bildung von mehrfachen Sicherheitsstoppschaltungen verwendet werden.

5 Person, die durch ein anerkanntes Ausbildungs- oder Berufsschlusszertifikat bzw. durch umfangreiche Kenntnisse und die entsprechende Ausbildung oder Erfahrung mit Erfolg nachweisen kann, dass sie in der Lage ist, Probleme bezüglich des in Frage stehenden Gegenstanzes und bei der Arbeit mit diesem zu lösen.
Schutzhalt- (Sicherheitsstopp-)Schaltungen

Ein Schutzhalt (Sicherheitsstopp) ermöglicht ein geordnetes Anhalten der Bewegung zu Schutzzwecken. So ergibt sich ein Stillstand, und die Spannungsversorgung der MPSEs wird unterbrochen (vorausgesetzt, dass sich hierdurch keine zusätzlichen Gefahren ergeben). Eine Schutzhaltsschaltung umfasst gewöhnlich mindestens zwei Schließerkontakte von zwangsgeführten, mechanisch verbundenen Relais, die (mithilfe der externen Geräteüberwachung) bestimmte Störungen erkennen und dadurch den Verlust der Sicherheitsfunktion verhindern. Eine solche Schaltung kann als „sicherer Schaltpunkt“ beschrieben werden. Normalerweise sind Schutzhaltsschaltungen entweder einkanalig, d. h. eine Reienschaltung von mindestens zwei Schließerkontakten, oder zweikanalig, d. h. eine separate Schaltung von zwei Schließerkontakten. Bei beiden Methoden hängt die Sicherheitsfunktion von der Verwendung redundanter Kontakte für die Kontrolle einer einzigen Gefahr ab. Wenn ein Kontakt ausfällt, stoppt der zweite Kontakt die Gefahr und verhindert, dass der nächste Zyklus ausgeführt wird. Siehe Allgemeine Schaltpläne auf Seite 45.

Der Anschluss der Schutzhaltsschaltungen muss so erfolgen, dass die Schutzfunktion nicht aufgehoben, deaktiviert oder umgangen werden kann, oder auf eine Weise, dass der gleiche oder ein höherer Grad an Sicherheit erreicht wird wie beim Sicherheitssteuerungssystem der Maschine, zu dem der EZ-SCREEN gehört.

Die Sicherheits-Schließerausgänge von einem Interface-Modul stellen eine Reihenschaltung redundanter Kontakte dar, die Schutzhaltsschaltungen zur Verwendung in Einkanal- oder Zweikanalsteuerungen bilden. Siehe Allgemeine Schaltpläne auf Seite 45.

Zweikanalsteuerung

Einkanalsteuerung

Folgende Methoden können unter anderem verwendet werden, um die Wahrscheinlichkeit derartiger Störungen auszuschließen:

- Trennung der Anschlussleitungen voneinander und von sekundären Energiequellen
- Verlegung der Anschlussleitungen in separaten Kabelwegen, -schutzrohren oder -kanälen
- Unterbringung aller Elemente (Module, Schalter und gesteuerte Geräte) nebeneinander auf einer Steuertafel und direkte Verbindung der Elemente untereinander mit kurzen Leitungen
- Verwendung von Komponenten mit Zwangsoffnung oder Direktantrieb, die im Zwangsführungsmodus montiert werden

5.9.3 Primäre Steuerelemente der Maschine und EDM-Eingang

Je nachdem, wie hoch das Risiko eines Personenschadens ist, können redundante MPSEs oder andere Steuervorrichtungen notwendig sein, die die gefährliche Maschinenbewegung unabhängig vom Zustand des anderen Elements sofort anhalten können. Diese beiden Kanäle der Maschinensteuerung brauchen nicht identisch zu sein (d. h. sie können diversität redundant sein). Bei der Stoppzeit der Maschine (Ts, zur Berechnung des Sicherheitsabstands, siehe Berechnung des Sicherheitsabstands (Mindestabstand) auf Seite 20) muss jedoch der langsamere der beiden Kanäle berück-
sichtigt werden. Weitere Informationen erhalten Sie unter Allgemeine Schaltpläne auf Seite 45 oder beim Maschinenhersteller.

Um sicherzustellen, dass eine Anhäufung von Fehlern den Redundanzsteuerplan nicht beeinträchtigt (keinen gefährlichen Ausfall verursacht), muss es eine Methode für die Überprüfung des normalen Funktionierens der MPSEs oder sonstigen Steuervorrichtungen geben. EZ-SCREEN bietet für diese Überprüfung eine praktische Methode: die externe Geräteüberwachung (EDM).

Damit die externe Geräteüberwachung des EZ-SCREEN einwandfrei funktioniert, muss jedes Gerät einen zwangsgeführten (mechanisch verbundenen) Öffnerkontakt enthalten, der den Status des Geräts korrekt widerspiegeln kann. Hierdurch wird sichergestellt, dass die Schließerkontakte, die zur Steuerung gefährlicher Bewegungen dienen, eine positive Beziehung zu den Öffnerüberwachungskontakten haben und einen gefährlichen Ausfall erkennen können (z. B. Kontakte, die verschweißt oder in der eingeschalteten Position hängengeblieben sind).

Ist eine Überwachung der Kontakte nicht möglich oder entspricht sie nicht den Anforderungen im Hinblick auf die Zwangsgeführtheit (mechanische Verbundenheit), sollte wie folgt vorgegangen werden:

- Die Geräte austauschen, damit sie überwacht werden können, oder
- die EDM-Funktion so nah wie möglich am MPSE einbauen (z. B. Überwachung der Endschaltgeräte), und
- bewährte, sorgfältig getestete und robuste Komponenten und die allgemein gültigen Sicherheitsgrundsätze (einschließlich des Fehlerausschlussprinzips) in die Konstruktion und Installation integrieren, um die Wahr scheinlichkeit unerkannter Fehler oder Defekte, die zum Verlust der Sicherheitsfunktion führen können, entweder zu beseitigen oder auf einen akzeptablen (möglichst niedrigen) Risikograd zu reduzieren.

Mit dem Fehlerausschlussprinzip kann der Konstrukteur die Möglichkeit mehrerer Fehler ausschließen und dies mit dem Risikobewertungsprozess begründen, um die gewünschte Sicherheitsleistung zu erzielen (z. B. die Anforderungen für Kategorie 2, 3 oder 4). Weitere Informationen sind ISO 13849-1/-2 zu entnehmen.

WARNUNG:
- Externe Geräteüberwachung (EDM)
- Wenn eine Gefahrensituation entsteht, könnten schwere oder tödliche Verletzungen die Folge sein.
- Wenn das System für „Keine Überwachung“ konfiguriert wird, ist der Anwender dafür verantwort lich, dass dadurch keine Gefahr situation hervorgerufen wird.

Externe Geräteüberwachung

Verdrahtung der externen Geräteüberwachung

Bei EZ-SCREEN-Empfängern mit einem Datumscode vor 0834 müssen die Überwachungskontakte innerhalb von 200 Millisekunden nach dem Einschalten der OSSD-Ausgänge öffnen (ein Freizustand) und innerhalb von 200 Millisekunden nach dem Ausschalten der OSSD-Ausgänge schließen (ein blockierter Zustand), andernfalls tritt eine Sperre auf.

Zweikanalige Überwachung

Dies ist eine unabhängige Reihenschaltung geschlossener Überwachungskontakte, die von jeder durch den EZ-SCREEN gesteuerten Vorrichtung zwangsgeführt (mechanisch verbunden) sind. Die Überwachungskontakte müssen geschlossen sein, bevor der EZ-SCREEN zurückgesetzt werden kann und die OSSDs eingeschaltet werden können. Ungeachtet des Zustands der OSSDs kann sich der Zustand der Überwachungskontakte ändern (entweder beide geöffnet oder beide geschlossen). Wenn sich die Überwachungskontakte mehr als 250 Millisekunden lang in gegensätzlichen Zuständen befinden, tritt ein Sperrzustand ein.

Abbildung 16. Verdrahtung für Zweikanal-EDM

Siehe obige Abbildungen für Zweikanal-EDM-Verdrahtung. Schließen Sie die Überwachungskontakte wie abgebildet zwischen +24 V DC und EDM1 (Pin 3) und zwischen +24 V DC und EDM2 (Pin 2) an.

Bei EZ-SCREEN-Empfängern mit einem Datumscode vor 0834 müssen die Überwachungskontakte immer innerhalb von 200 Millisekunden nach dem entsprechenden OSSD-Zustandswechsel schließen (ausschalten), da sonst ein Sperrzustand eintritt.

Keine Überwachung

Verwenden Sie diese Konfiguration beim Durchführen der Überprüfung vor der Inbetriebnahme; siehe Überprüfung vor der erstmaligen Inbetriebnahme auf Seite 33. Wenn die EDM-Funktion bei der Anwendung nicht benötigt wird, trägt der Anwender die Verantwortung dafür, dass durch eine solche Konfiguration keine Gefahrsituation entsteht. Um das System für „Keine Überwachung“ zu konfigurieren, überbrücken Sie EDM1 (orangefarbener Draht, Pin 3) zu EDM2 (orange-schwarzer Draht, Pin 2).

Eine andere Methode für die Konfiguration ohne Überwachung besteht darin, den Konfigurations-DIP-Schalter auf E1 (Einkanal-Überwachung) zu setzen und EDM1 (orangefarbener Draht, Pin 3) mit +24 V DC zu verbinden (siehe Einstellungen zur Systemkonfiguration auf Seite 49). Diese Methode ermöglicht die Verwendung des Hilfsausgangs (siehe 5.10 Hilfsausgang (Aux) auf Seite 43) in Anwendungen, bei denen die EDM-Funktion nicht benötigt wird.

5.10 Hilfsausgang (Aux)

Eine Hilfsausgangsfunktion ist verfügbar, wenn der Empfänger für Einkanal-EDM konfiguriert ist (für Empfänger mit Datumscode 0834 oder jünger). Dieser stromliefernde (PNP-)Transistorausgang (maximal 75 mA) wird für Steuerungsfunktionen verwendet, die nicht sicherheitsrelevant sind. Eine typische Anwendung ist die Signalisierung des Zustands der OSSDs an eine speicherprogrammierbare Steuerung (SPS). Der Hilfsausgang folgt dem Zustand der OSSDs. Pin 2 (orange/schwarz) versorgt den Anschluss; siehe Allgemeine Schaltpläne auf Seite 45.

So verwenden Sie den Hilfsausgang in einer Anwendung, die für keine Überwachung konfiguriert ist:

2. Schließen Sie EDM1 (Pin 3) an +24 V DC an (siehe 5.10 Hilfsausgang (Aux) auf Seite 43).

Bei der Nachrüstung von Empfängern mit Aux-Ausgang in früheren Installationen gibt es keine Kompatibilitätsprobleme, wenn Vorkehrungen getroffen werden, die verhindern, dass EDM2 (Pin 2, orange-schwarzer Leiter) einen Kurzschluss gegen Erde oder gegen eine andere Energiequelle verursacht.
5.11 Externer Testeingang

Diese Funktion kann bei der Einrichtung des EZ-SCREEN und bei Funktionsprüfungen der Steuerschaltung der Maschine hilfreich sein.

Zu weiteren Informationen siehe Spezifikationen auf Seite 10, Elektrische Anschlüsse an die überwachte Maschine auf Seite 39 und Sensor-Austauschbarkeit auf Seite 44.

5.12 Vorbereitung für den Systembetrieb

Nachdem der Detektionsfunktionstest vor der Inbetriebnahme erfolgreich durchgeführt wurde und die OSSD-Sicherheitsausgänge und EDM-Anschlüsse mit der überwachten Maschine verbunden wurden, ist der EZ-SCREEN bereit, zusammen mit der überwachten Maschine getestet zu werden.

Der Betrieb des EZ-SCREEN mit der überwachten Maschine muss überprüft werden, bevor das System zusammen mit der Maschine in Betrieb genommen werden darf. Hierzu muss eine qualifizierte Person die Inbetriebnahmeprüfungen durchführen.

5.13 Sensor-Austauschbarkeit

Diese Verdrahtungsoption ermöglicht den Austausch (bzw. die Austauschbarkeit) der Sensoren untereinander – jeder Sensor kann an jedem QD-Schnellanschluss installiert werden.

Abbildung 17. 8-polige Verbinde (optionale Verkabelung)

5.14 Allgemeine Schaltpläne

Sender (Standard)

8-poliger M12-Stecker

1 – Braun
7 – Grün/Gelb
6 – Blau
5 – Schwarz
4 – Weiß
8 – Lila
3 – Orange
2 – Orange/Schwarz

+24 V DC
0 V DC

öffner
öffner
öffner
öffner
öffner
öffner
öffner
öffner

Abbildung 18. Sender (Standard): Allgemeiner Schaltplan

Anmerkung: Die Pins 2, 3, 4, 5 und 8 werden nicht verbunden, oder sie werden parallel mit dem gleichfarbigen Draht vom Empfängerkabel verbunden.

Sender (mit Test)

5-poliger Stecker M12

1 – Braun
5 – Grün/Gelb
3 – Blau
4 – Schwarz
2 – Weiß

+24 V DC
0 V DC

Brücke

oder
zum Test öffnen

Abbildung 19. Sender (mit Test): Allgemeiner Schaltplan
Abbildung 20. FSDs (2-Kanal-EDM, mit Reset) – Allgemeiner Schaltplan des Empfängers

Abbildung 21. Selbstüberwachendes Sicherheitsmodul, Sicherheitssteuerung, Sicherheits-SPS (keine Überwachung, kein Reset) – Allgemeiner Schaltplan des Empfängers
Anmerkung: Adapter-Anschlussleitungen vom Typ DEE8-..D können in ähnlicher Weise wie die QDE-8..D verwendet werden.

Die DIP-Schalter des EZ-SCREEN-Empfängers sind für „Schaltausgang“ (T) und Zweikanal-EDM (E2) konfiguriert. Wenn der Hilfsausgang verwendet werden soll, konfigurieren Sie den EZ-SCREEN-Empfänger für Einkanal-EDM (E1) und verbinden Sie Pin #3 (Or) mit +24 V DC.

Abbildung 22. Interface-Modul (Zweikanal-EDM, mit Reset) – Allgemeiner Schaltplan des Empfängers

Installation von Überspannungsbegrenzern oder Lichtbogen-Entstörgliedern über die Spulen von MPSE1 und MPSE2 wird empfohlen (siehe Warnhinweis).

Auslösung (automatischer Reset) – Nicht verbunden

Andere Interface-Module und Anschlusslösungen verfügbar, siehe Zubehör oder den Banner-Sicherheitskatalog.

† Siehe Zubehör – Anschlussleitungen für weitere Informationen zu QDE-..D Kabeln.
Abbildung 23. Interface-Modul (Ein-Kanal-EDM, mit Reset) – Allgemeiner Schaltplan des Empfängers

* Es wird empfohlen, über den Spulen von MPSE1 und MPSE2 Überspannungs begrenzer (Lichtbogen-Entstörglieder) zu installieren.

** Auslösung (automatischer Reset) – Nicht verbunden

*** Es sind weitere Interface-Module und Anschlusslösungen erhältlich.

† Siehe Anschlussleitungen auf Seite 16 für weitere Informationen zu QDE-8D-Anschlussleitungen.

WARNUNG:

- Überspannungs begrenzer oder Lichtbogen-Entstörglieder ordnungsgemäß installieren
- Wenn diese Anweisungen nicht befolgt werden, können schwere oder tödliche Verletzungen die Folge sein.
6 Bedienungsanleitung

6.1 Sicherheitsprotokoll

Bestimmte Tätigkeiten bei Installation, Wartung und Bedienung des EZ-SCREEN müssen entweder von autorisierten Personen oder von qualifizierten Personen durchgeführt werden.

Eine **autorisierter Person** wird vom Arbeitgeber als entsprechend ausgebildete und qualifizierte Person zur Durchführung von System-Resets und den spezifischen Prüfroutinen am EZ-SCREEN ausgesucht und schriftlich ermächtigt. Die autorisierte Person hat folgende Befugnisse:

- Durchführung von manuellen Resets und Aufbewahrung des Reset-Schlüssels
- Durchführung der täglichen Überprüfung

Eine **qualifizierte Person** hat durch eine anerkannte fachspezifische Ausbildung oder durch umfassende Kenntnisse, Schulungen und Erfahrungen erfolgreich unter Beweis gestellt, dass sie Probleme im Zusammenhang mit der Installation des EZ-SCREEN-Systems und seiner Integration mit der überwachten Maschine lösen kann. Die qualifizierte Person zusätzlich zu den Befugnissen einer autorisierten Person die folgenden Befugnisse:

- Installation des EZ-SCREEN-Systems
- Durchführung aller Überprüfungen
- Durchführung von Veränderungen an den internen Konfigurationseinstellungen
- Durchführung eines System-Resets nach einem Sperrzustand

6.2 Einstellungen zur Systemkonfiguration

Legen Sie die Systemeinstellungen mithilfe der Konfigurationstafeln fest, die sich auf jedem Sensor hinter der Abdeckung befinden. Die Abdeckung wird geöffnet, indem zunächst die werkseitig installierte Sicherheitsplatte mit dem mitgelieferten Sicherheits-Sechskantschlüssel entfernt wird. Installieren Sie die Sicherheitsplatte nach jeder Konfigurationsänderung neu.

Sämtliche DIP-Schalterpaare müssen identisch eingestellt werden, damit das System funktionieren kann.

Abbildung 24. DIP-Schalter für die Konfiguration des EZ-SCREEN (Empfänger)

SC1 oder SC2 – Scancode 1 (Standard) oder Scancode 2
T oder L (Block A) – Schaltausgang (T) (Standard) oder Verriegelungsausgang (L)
RR oder aus – Reduzierte Auflösung (Standard: Aus)
T oder L (Block B) – Schaltausgang (T) (Standard) oder Verriegelungsausgang (L); die Schaltereinstellungen für Block A und Block B müssen übereinstimmen
RR oder Aus (Block B) – Reduzierte Auflösung (Standard: Aus); die Schaltereinstellungen für Block A und Block B müssen übereinstimmen
E1 oder E2 – EDM 1-Kanal oder EDM 2-Kanal (Standard); wenn die EDM-Verdrahtung nicht mit der angezeigten Schalterstellung (E2) übereinstimmt, tritt ein EDM-Fehler auf und eine Konfiguration einer festen Ausblendung oder einer Kaskade ist nicht zulässig.

Da er über redundante Mikroprozessoren verfügt, hat der Empfänger zwei DIP-Schalterblöcke (Block A und Block B), die identisch eingestellt werden müssen. Anderenfalls wird beim Anlegen der Stromversorgung ein Sperrzustand ausgelöst. Die Stromversorgung des EZ-SCREEN sollte ausgeschaltet sein, wenn die DIP-Schalter-Einstellungen geändert werden, da sonst eine Sperre ausgelöst wird.

Nach Überprüfung/Festlegung der Konfigurationseinstellungen muss die Abdeckung wieder ganz geschlossen werden (einrasten), damit die Schutzzart erhalten bleibt. Abgesehen vom Scancode dürfen alle Konfigurationseinstellungen nur geändert werden, wenn das System ausgeschaltet ist.

Anmerkung: Die entsprechenden DIP-Schalterpaare müssen identisch eingestellt werden, damit das System funktionieren kann.

www.bannerengineering.com

Der Betrieb mit **Schalt- oder Verriegelungsausgang** wird an zwei DIP-Schaltern im Port für die Empfängerkonfiguration gewählt. Legen Sie für beide Schalter die gleiche Einstellung fest. Bei unterschiedlichen Einstellungen wird ein Fehler-Code angezeigt. Wenn die Schalter für Schaltausgang (T) eingestellt sind, wird automatisch ein Reset des Systems ausgeführt. Wenn die Schalter auf Verriegelungsausgang (L) eingestellt sind, erfordert das System einen manuellen Reset.

6.2.1 Zugriff auf das Konfigurations-Bedienfeld

Bevor Sie Änderungen an der DIP-Schalterkonfiguration vornehmen, befolgen Sie die folgenden Anweisungen, um die Abdeckplatte zu öffnen.

1. Entfernen Sie die Schutzplatte mit dem mitgelieferten Schutzplattenwerkzeug.

3. Drehen Sie den Schraubendreher gegen die Abschrägung, bis die Abdeckplatte aufspringt.
5. Um die Abdeckplatte zu schließen, drücken Sie die Abdeckung ein, bis sie „eirastet“. Die Abdeckplatte ist abnehmbar. Sollte sie sich also lösen, lassen Sie sie wieder in das Scharnier einrasten und schließen Sie sie.

Es ist wichtig, die Abdeckung durch Einrasten zu schließen, damit die IP65-Schutzklasse der Sensoren gewährleistet bleibt. Wenn eine Abdeckplatte verloren geht oder beschädigt wird, bestellen Sie eine Ersatzplatte beim Werk (siehe **Ersatzteile auf Seite 89**). Bei Installationen, die Stößen und Vibrationen ausgesetzt sind, muss die Schutzplatte immer wieder neu befestigt werden.
6.2.2 Invertiertes Display
Um die Anzeige zu invertieren, verwenden Sie eine Drucktaste unter der Abdeckung. Invertieren Sie die Anzeige, wenn ein Sender und ein Empfänger mit den Anschlussseiten des Schnellanschlusses nach oben montiert sind. Eine Ersatzabdeckung mit einem umgekehrten Etikett ist jedem Sender und Empfänger beigefügt, um eine umgekehrte Montage zu ermöglichen.

6.2.3 Einstellung von Schalt- oder Verriegelungsausgängen
- Wenn der Schaltausgang gewählt wurde, schalten sich die OSSD-Ausgänge EIN, nachdem die Versorgung eingeschaltet wurde und der Empfänger seinen internen Selbsttest bestanden hat/die Synchronisierung ausgeführt wurde und erkannt hat, dass alle Strahlen frei sind. Die OSSD-Ausgänge schalten sich auch ein, wenn nach einem blockierten Strahl alle Strahlen wieder frei sind.
- Wenn der Verriegelungsausgang gewählt wurde, erfordert der EZ-SCREEN einen manuellen Reset zum Einschalten der OSSD-Ausgänge bei jedem Einschalten der Versorgung und wenn alle Strahlen frei sind, oder nachdem ein Strahl blockiert war.

WARNUNG:
- Verwendung des automatischen (Schaltbetrieb) oder manuellen (Verriegelungsbetrieb) Anlauf/Wiederanlaufs
- Wenn diese Anweisungen nicht befolgt werden, können schwere oder tödliche Verletzungen die Folge sein.

6.3 Reset-Verfahren

6.3.1 Manuelle Resets und Sperrzustände
Reset-Routine: Am EZ-SCREEN muss ein manueller Reset durchgeführt werden, um einen Sperr- oder Verriegelungszustand mit WiederanlaufsperrerkéINE beim Schaltfeld und nach Beseitigung der Ursache eines Sperrzustands aufzuheben. Diese Funktion sorgt für einen überwachten manuellen Reset (Öffnen, Schließen, Öffnen), damit ein kurzgeschlossener oder dauerhaft aktivierter Schalter keinen Reset verursachen kann. Wenn ein schlüsselbetätigter Schalter verwendet wird, dieser Vorgang wird als Schlüssel-Reset bezeichnet.

Führen Sie einen manuellen Reset aus, schließen Sie den Schließerschalter mindestens 0,25 Sekunden und höchstens 2 Sekunden lang und öffnen Sie den Schalter danach wieder.

Schaltausgang/Automatischer Reset: Die Verwendung eines Reset-Schalters wird zwar empfohlen, ist aber für Empfänger des EZ-SCREEN, die für Schaltausgang (automatischen Reset) konfiguriert sind, nicht notwendig. Das Umschalten der Versorgungsspannung (Aus für > 2 Sekunden, dann Ein) löscht auch Sperren, wenn deren Ursache behoben wurde. Wenn kein Reset-Schalter verwendet wird, lassen Sie Pin 8 (violetter Leiter) nicht angeschlossen (offen) und sichern Sie ihn mit einer Stromquelle oder Masse gegen Kurzschluss.

6.3.2 Rücksetzen des Empfängers

Der Empfänger des EZ-SCREEN hat einen Reset-Eingang (Pin 8, violetter Leiter), über den das System manuell zurückgesetzt werden kann.

Am EZ-SCREEN muss ein manueller Reset durchgeführt werden, um einen Verriegelungszustand aufzuheben und den Betrieb nach einem Stoppbefehl wieder aufzunehmen. Bei internen Sperrzuständen ist ebenfalls ein manueller Reset erforderlich, um das System in den RUN-Modus zurückzuversetzen, nachdem die Störung behoben und der Eingang richtig durchgeschaltet wurde.

Manuelle Resets des Empfängers sind in folgenden Situationen erforderlich:
- Betrieb mit Schaltausgang – nur nach einer Systemsperre
- Betrieb mit Verriegelungsausgang – bei Netzeinschaltung, nach jedem Verriegelungszustand mit Wiederanlaufsperrere oder nach einer Systemsperre

So setzen Sie den Empfänger zurück:

1. Schließen Sie den Reset-Schalter für 0,25 bis 2 Sekunden. (Wenn der Reset-Schalter vom Typ MGA-KS0-1 verwendet wird, drehen Sie den Schlüssel zum Schließen um 1/4 Umdrehung im Uhrzeigersinn.)
2. Öffnen Sie den Schalter. (Wenn der Reset-Schalter vom Typ MGA-KS0-1 verwendet wird, drehen Sie den Schlüssel zum Öffnen gegen den Uhrzeigersinn zurück in seine ursprüngliche Position.)

Wichtig: Wird der Reset-Schalter zu lange geschlossen, ignoriert das System die Reset-Anforderung. Der Schalter muss für 0,25 bis 2 Sekunden geschlossen werden, aber nicht länger.

6.3.3 Zurücksetzen des Senders

Für den seltenen Fall, dass ein Sender zurückgesetzt werden muss, schalten Sie den Sensor ab und danach wieder an. Sender-Resets sind nur erforderlich, wenn eine Sperre auftritt.

6.4 Statusanzeigen

Die Statusanzeigen befinden sich deutlich sichtbar an der Vorderseite von Sender und Empfänger.

Sender:

<table>
<thead>
<tr>
<th>Schlüssel</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Statusanzeige (rot/grün): zeigt an, ob die Stromversorgung anliegt und ob sich der Sender im RUN-Modus, TEST-Modus oder im Sperrzustand befindet.</td>
</tr>
<tr>
<td>B</td>
<td>Einstelliges Diagnose-Display – zeigt bestimmte Fehler- oder Konfigurationszustände an.</td>
</tr>
</tbody>
</table>

Abbildung 25. Sender
Empfänger:

<table>
<thead>
<tr>
<th>Schlüssel</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| A | Reset-Anzeige (gelb): zeigt den Systemstatus an:
• Betriebsmodus (EIN)
• Warten auf Reset (blinkend) |
| B | Statusanzeige (rot/grün): zeigt den Systemstatus an:
• Reduzierte Auflösung aktiviert (grün blinkend)
• Ausgänge sind EIN oder AUS (grüne Anzeige für EIN, rote Anzeige für AUS)
• Das System befindet sich im Sperrzustand (rot blinkend) |
| C | Dreistelliges Diagnose-Display: zeigt bestimmte Fehler, Konfigurationszustände oder die Gesamtzahl blockierter Strahlen an. |
| D | Zonenanzeigen (rot/grün): zeigen jeweils den Status von etwa 1/8 der Gesamtheit der Strahlen an:
• Ausgerichtet und frei (grüne Anzeige EIN)
• Blockiert und/oder falsch ausgerichtet (rote Anzeige EIN)
• Fester Ausblendbereich (grün blinkend) |
| E | Anzeige für Zone 1: zeigt den Strahlensynchronisierungsstatus an |

6.4.1 Statusanzeigen des Senders

Eine zweifarbbige rot-grüne Statusanzeige gibt an, ob die Stromversorgung anliegt und ob sich der Sender im RUN-Modus, im optionalen Test-Modus oder im Sperrzustand befindet. Auf einem Diagnose-Display wird ein spezieller Fehlercode angezeigt, wenn der Sender im Sperrzustand ist. Das Display zeigt auch kurz die Einstellung für den Scancode bei Netzeinschaltung oder Änderung der Einstellung an.

<table>
<thead>
<tr>
<th>Betriebsstatus</th>
<th>Notwendiges Ereignis</th>
<th>Statusanzeige</th>
<th>Diagnosedisplay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltausgang</td>
<td>Stromeinschaltung</td>
<td>Einmal rot blinkend</td>
<td>Scancode blinkt 3 Mal, abwechselnd</td>
</tr>
<tr>
<td>RUN-Modus</td>
<td>Interne Tests bestanden</td>
<td>Grün</td>
<td>[Symbol]</td>
</tr>
<tr>
<td>Test-Modus</td>
<td>Offener Testschalter</td>
<td>Grün blinkend</td>
<td>[Symbol]</td>
</tr>
<tr>
<td>Sperrzustand</td>
<td>Interner/externer Fehler</td>
<td>Rot blinkend</td>
<td>Fehlercode-Anzeige (siehe Fehlerbehebung auf Seite 77)</td>
</tr>
</tbody>
</table>

6.4.2 Empfänger-Statusanzeige

Eine zweifarbbige rot-grüne Statusanzeige leuchtet, wenn die OSSD-Ausgänge AN (grün) oder AUS (rot) sind, oder wenn sich das System im Sperrzustand befindet (rot blinkend). Auf einem Diagnose-Display wird die Konfigurationseinstellung des Empfängers für Schaltbetrieb (¬) oder Verriegelungsbetrieb (L) angegeben. Wenn sich der Empfänger im Sperrzustand befindet, wird ein spezieller Fehlercode angezeigt. Auf dem Diagnose-Display wird auch für einen Moment der Scancode bei Netzeinschaltung oder bei Änderungen angezeigt.
Anzeigen des Empfängers, wenn für Schaltausgang konfiguriert

<table>
<thead>
<tr>
<th>Betriebsart</th>
<th>Notwendi-ges Ereignis</th>
<th>Reset-Anzeige</th>
<th>Statusanzeige</th>
<th>Zonenanzeige</th>
<th>Diagnoseanzeigen</th>
<th>OSSD-Ausgänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltausgang</td>
<td>Stromeinschaltung</td>
<td>Aus</td>
<td>Einfach rot</td>
<td>Alle einfach rot</td>
<td>Scancode blinkt 3 Mal, abwechselnd</td>
<td>Aus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blinkend</td>
<td>Blinkend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausrichtmodus –</td>
<td>Interne Tests bestanden</td>
<td>Aus</td>
<td>Aus</td>
<td>Zone 1 rot</td>
<td>Gesamtanzahl blockierter Strahlen</td>
<td>Aus</td>
</tr>
<tr>
<td>Strahl 1 blockiert</td>
<td></td>
<td></td>
<td></td>
<td>Übrige aus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausrichtmodus –</td>
<td></td>
<td>Ein</td>
<td>Rot</td>
<td>Zone 1 grün, übrige rot oder grün</td>
<td>Gesamtanzahl blockierter Strahlen</td>
<td>Aus</td>
</tr>
<tr>
<td>Strahl 1 frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebsart RUN –</td>
<td>Alle Strahlen ausricht-en</td>
<td>Ein</td>
<td>Leuchtet oder</td>
<td>Alle grün leuchtend</td>
<td>Aus</td>
<td>Aus</td>
</tr>
<tr>
<td>frei</td>
<td></td>
<td></td>
<td>blinkt grün*</td>
<td></td>
<td></td>
<td>Ein</td>
</tr>
<tr>
<td>Betriebsart RUN –</td>
<td>Strahl(en) blockiert</td>
<td>Ein</td>
<td>Rot</td>
<td>Rot oder grün*</td>
<td>Gesamtanzahl blockierter Strahlen</td>
<td>Aus</td>
</tr>
<tr>
<td>Blockiert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rauschen erkannt</td>
<td></td>
<td>Blinkend</td>
<td>Anzeige liegt</td>
<td>Anzeige liegt</td>
<td>Blinkend</td>
<td>Blinkend</td>
</tr>
<tr>
<td>– Reset-Anschluss</td>
<td></td>
<td></td>
<td>weiterhin an</td>
<td>weiterhin an</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rauschen erkannt</td>
<td></td>
<td></td>
<td>Anzeige liegt</td>
<td>Anzeige liegt</td>
<td></td>
<td>Anzeige liegt</td>
</tr>
<tr>
<td>– EDM-Anschluss</td>
<td></td>
<td></td>
<td>weiterhin an</td>
<td>weiterhin an</td>
<td></td>
<td>weiterhin an</td>
</tr>
<tr>
<td>Sperrzustand</td>
<td>Interner/externer Fehler</td>
<td>Aus</td>
<td>Rot blinkend</td>
<td>Alle aus</td>
<td>Fehlercode-Anzeige (siehe Fehlerbehebung auf Seite 77)</td>
<td>Aus</td>
</tr>
</tbody>
</table>

Anzeigen des Empfängers, wenn für Verriegelungsausgang konfiguriert

<table>
<thead>
<tr>
<th>Betriebsart</th>
<th>Notwendiges Ereignis</th>
<th>Reset-Anzeige</th>
<th>Statusanzeige</th>
<th>Zonenanzeige</th>
<th>Diagnoseanzeigen</th>
<th>OSSD-Ausgänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltausgang</td>
<td>Stromeinschaltung</td>
<td>Aus</td>
<td>Einfach rot</td>
<td>Alle einfach rot</td>
<td>Scancode blinkt 3 Mal, abwechselnd</td>
<td>Aus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blinkend</td>
<td>Blinkend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausrichtmodus –</td>
<td>Interne Tests bestanden</td>
<td>Aus</td>
<td>Aus</td>
<td>Zone 1 rot</td>
<td>Gesamtanzahl blockierter Strahlen</td>
<td>Aus</td>
</tr>
<tr>
<td>Strahl 1 blockiert</td>
<td></td>
<td></td>
<td></td>
<td>Übrige aus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausrichtmodus –</td>
<td></td>
<td>Ein</td>
<td>Rot</td>
<td>Strahl 1 grün, übrige rot oder grün</td>
<td>Gesamtanzahl blockierter Strahlen</td>
<td>Aus</td>
</tr>
<tr>
<td>Strahl 1 frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 Wenn Strahl 1 blockiert ist, sind die Zonenanzeigen 2–8 aus, weil Strahl 1 das Synchronisierungssignal für alle Strahlen liefert.
7 wenn reduzierte Auflösung aktiviert ist.
8 Wenn Strahl 1 blockiert ist, sind die Zonenanzeigen 2–8 aus, weil Strahl 1 das Synchronisierungssignal für alle Strahlen liefert.
6.4.3 Statusanzeigen für Kaskadenschaltungen

Wenn mehrere Lichtvorhänge in Kaskade geschaltet werden, können einige einzigartige Anzeigen auftreten.

Wenn sich der CSSI-Eingang eines Empfängers im Stoppzustand befindet (beispielsweise aufgrund eines in der Kaskade vorgeschalteten blockierten Lichtvorhangs oder aufgrund eines Stoppsignals von einem Not-Halt-Schalter), erscheint die Anzeige der nachgeschalteten Empfänger (einschließlich des Hauptempfängers) von vertikalen Linien umschlossen.

<table>
<thead>
<tr>
<th>Betriebsart</th>
<th>Notwen-diges Ereignis</th>
<th>Reset-An-zeige</th>
<th>Statusanzei-gen</th>
<th>Zonenanzei-gen</th>
<th>Diagnoseanzeigen</th>
<th>OSSD-Ausgänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausrichtmodus – alle Strahlen frei</td>
<td>Alle Strahlen ausrichten</td>
<td>Doppelt blinkend</td>
<td>Rot</td>
<td>Alle grün leuchtend</td>
<td>Aus</td>
<td>Aus</td>
</tr>
<tr>
<td>Betriebsart RUN – frei</td>
<td>Reset durchführen</td>
<td>Ein</td>
<td>Leuchtet oder blinkt grün</td>
<td>Alle grün leuchtend</td>
<td>Aus</td>
<td>Aus</td>
</tr>
<tr>
<td>Verriegelt – Blockierter Strahl 1 blockiert</td>
<td>Blockierung Strahl 1</td>
<td>Ein</td>
<td>Rot</td>
<td>Rot oder grün</td>
<td>Aus</td>
<td>Aus</td>
</tr>
<tr>
<td>Verriegelt – Blockierter Strahl 1 oder mehrere Strahlen</td>
<td>Blockierung</td>
<td>Ein</td>
<td>Rot</td>
<td>Rot oder grün</td>
<td>Aus</td>
<td>Aus</td>
</tr>
<tr>
<td>Verriegelt – Frei</td>
<td>Alle Strahlen frei machen</td>
<td>Blinkend</td>
<td>Rot</td>
<td>Alle grün leuchtend</td>
<td>Aus</td>
<td>Aus</td>
</tr>
<tr>
<td>Rauschen erkannt – Reset-Anschluss</td>
<td></td>
<td>Blinkend</td>
<td>Anzeige liegt weiterhin an</td>
<td>Anzeige liegt weiterhin an</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rauschen erkannt – EDM-Anschluss</td>
<td></td>
<td></td>
<td>Anzeige liegt weiterhin an</td>
<td>Anzeige liegt weiterhin an</td>
<td>Blinkend</td>
<td></td>
</tr>
<tr>
<td>Spernzustand</td>
<td>Interne/externe Fehler</td>
<td>Aus</td>
<td>Rot blinkend</td>
<td>Alle aus</td>
<td>Fehlercode-Anzeige (siehe Fehlerbehebung auf Seite 77)</td>
<td>Aus</td>
</tr>
</tbody>
</table>

9, wenn reduzierte Auflösung aktiviert ist.
Bedeutung der LED-Anzeigen in der Kaskade

<table>
<thead>
<tr>
<th>Zustand</th>
<th>OSSDs</th>
<th>Anzeige</th>
<th>Reset-Anzeige</th>
<th>Statusanzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockiert</td>
<td>Aus</td>
<td>Anzahl der blockierten Strahlen</td>
<td>Ein</td>
<td>Rot</td>
</tr>
<tr>
<td>CSSI-Stopp (vorgeschalteter Empfänger ist blockiert)</td>
<td>Aus</td>
<td></td>
<td>Ein</td>
<td>Rot</td>
</tr>
<tr>
<td>Frei</td>
<td>Ein</td>
<td></td>
<td>Ein</td>
<td>Grün</td>
</tr>
</tbody>
</table>

Eingeschaltete Kaskade frei

Konfig:
- Schaltausgang Display: – OSSDs: Ein
- Reset: Ein
- Status: Grün

Objekt blockiert Lichtvorhang Nr. 4

<table>
<thead>
<tr>
<th>Konfig:</th>
<th>Schaltausgang Display: – OSSDs: Ein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehler:</td>
<td>OSSDs: Aus Reset: Ein Status: Grün</td>
</tr>
<tr>
<td>Fehler:</td>
<td>OSSDs: Aus Reset: Ein Status: Grün</td>
</tr>
<tr>
<td>Fehler:</td>
<td>OSSDs: Aus Reset: Ein Status: Grün</td>
</tr>
<tr>
<td>Fehler:</td>
<td>OSSDs: Aus Reset: Ein Status: Grün</td>
</tr>
</tbody>
</table>

Konfig:
- Schaltausgang Display: Anzahl blockierter Strahlen OSSDs: Aus Reset: Ein Status: Rot
- CSSI-Stopp (vorgeschalteter Empfänger ist blockiert) OSSDs: Aus Reset: Ein Status: Rot

Bedeutung der LED-Anzeigen in der Kaskade

Objekt blockiert Lichtvorhang Nr. 3

<table>
<thead>
<tr>
<th>Konfig:</th>
<th>Schaltausgang Display: – OSSDs: Ein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehler:</td>
<td>OSSDs: Aus Reset: Ein Status: Grün</td>
</tr>
<tr>
<td>Fehler:</td>
<td>OSSDs: Aus Reset: Ein Status: Grün</td>
</tr>
<tr>
<td>Fehler:</td>
<td>OSSDs: Aus Reset: Ein Status: Grün</td>
</tr>
<tr>
<td>Fehler:</td>
<td>OSSDs: Aus Reset: Ein Status: Grün</td>
</tr>
</tbody>
</table>

Objekt wurde entfernt; Kaskade wartet auf Reset

<table>
<thead>
<tr>
<th>Konfig:</th>
<th>Schaltausgang Display: – OSSDs: Ein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehler:</td>
<td>OSSDs: Aus Reset: Ein Status: Grün</td>
</tr>
<tr>
<td>Fehler:</td>
<td>OSSDs: Aus Reset: Ein Status: Grün</td>
</tr>
<tr>
<td>Fehler:</td>
<td>OSSDs: Aus Reset: Ein Status: Grün</td>
</tr>
<tr>
<td>Fehler:</td>
<td>OSSDs: Aus Reset: Ein Status: Grün</td>
</tr>
</tbody>
</table>

Konfig:
- Verriegelungsausgang Display: L OSSDs: Aus Reset: Blinkend Status: Rot

Reset erwartet
Überprüfungen

6.6 Anforderungen an periodisch durchzuführende Netzeinschaltungen

6.5 Standardbetrieb

6.5.1 System-Netzeinschaltung

Der EZ-SCREEN schaltet sich auf eine von zwei Arten ein, je nachdem, ob Schalt- oder Verriegelungsausgang eingeschaltet ist. Wenn Schaltausgang eingeschaltet ist, schaltet sich das System ein und führt einen automatischen Reset durch; wenn Verriegelungsausgang eingeschaltet ist, muss nach dem Einschalten und der Sensorausrichtung ein manueller Reset durchgeführt werden.

6.5.2 RUN-Modus

Verriegelungsausgangskonfiguration: Falls Lichtstrahlen bei laufendem EZ-SCREEN und bei aktiviertem Verriegelungsausgang blockiert werden, schalten sich die Ausgänge am Empfänger innerhalb der angegebenen Ansprechzeit des EZ-SCREEN aus (siehe Komponenten auf Seite 14). Wenn danach alle Strahlen frei werden, leuchten die Zonenanzeigen am Empfänger alle grün und die Reset-Anzeige blinkt ein Mal. Dadurch wird angezeigt, dass der EZ-SCREEN auf einen manuellen Reset wartet. Im Betrieb mit Verriegelungsausgang schalten sich die Ausgänge erst wieder ein, wenn alle Strahlen frei sind und nachdem ein manueller Reset durchgeführt wurde. Der EZ-SCREEN wartet auf einen manuellen Reset. Wenn ein gültiges Reset-Signal empfangen wird und alle Strahlen weiterhin frei bleiben, schalten sich die Ausgänge am Empfänger wieder EIN.

6.6 Anforderungen an periodisch durchzuführende Überprüfungen

Bei jedem Schichtwechsel, jedem Maschinenanlauf und jeder Änderung der Maschinenkonfiguration muss die tägliche Prüfroutine ausgeführt werden; diese Überprüfung muss von einer autorisierten oder qualifizierten Person durchgeführt werden.

Das System und seine Anschlüsse an die überwachte Maschine müssen halbjährlich gründlich geprüft werden; diese Prüfung muss von einer qualifizierten Person durchgeführt werden (siehe Prüfroutinen auf Seite 59). Eine Kopie der Überprüfungsergebnisse ist bei der Maschine oder in der Nähe der Maschine gut sichtbar anzubringen.

Bei jeder Änderung am System (z. B. bei einer neuen Konfiguration des EZ-SCREEN-Systems oder bei Änderungen an der Maschine) muss die Inbetriebnahmeprüfung durchgeführt werden.
Anmerkung: Funktionskontrolle
Der EZ-SCREEN kann seiner Funktion nur gerecht werden, wenn er und die von ihm überwachte Maschine sowohl einzeln wie auch zusammen einwandfrei funktionieren. Es liegt daher in der Verantwortung des Anwenders, regelmäßig wie in Prüfroutinen auf Seite 59 angegeben eine Funktionsprüfung durchzuführen. Wenn etwaige Funktionsprobleme nicht behoben werden, steigt dadurch das Verletzungsrisiko.

Bevor das System wieder in Betrieb genommen wird, muss sichergestellt werden, dass das EZ-SCREEN-System und die überwachte Maschine genau wie in den Prüfroutinen beschrieben funktionieren und dass alle Probleme gefunden und behoben wurden.
7 Prüfroutinen

In diesem Kapitel ist der Zeitplan für die Prüfroutinen aufgeführt und es wird beschrieben, wo die einzelnen Überprüfungen dokumentiert sind. Die Überprüfungen müssen wie beschrieben durchgeführt werden. Die Ergebnisse sollten aufgezeichnet und an einer geeigneten Stelle aufbewahrt werden (z. B. neben der Maschine und/oder in einem speziellen Ordner).

7.1 Zeitplan für Überprüfungen

<table>
<thead>
<tr>
<th>Prüfroutine</th>
<th>Wann die Prüfroutine durchgeführt wird</th>
<th>Wo die Prüfroutine zu finden ist</th>
<th>Wer die Prüfroutine durchführt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detektionsfunktions,test</td>
<td>Bei der Installation Jedes Mal, wenn das System, die überwachte Maschine oder ein Teil der Anwendung verändert wird.</td>
<td>Detektionsfunktions,test auf Seite 38</td>
<td>Qualifizierte Person</td>
</tr>
<tr>
<td>Inbetriebnahmeprüfung</td>
<td>Bei der Installation Immer, wenn Veränderungen am System vorgenommen werden (z. B. eine neue Konfiguration des EZ-SCREEN oder Veränderungen an der überwachten Maschine.)</td>
<td>Inbetriebnahmeprüfung auf Seite 59</td>
<td>Qualifizierte Person</td>
</tr>
<tr>
<td>Tägliche Überprüfungsroutine/Überprüfungsroute bei Schichtwechsel</td>
<td>Bei jedem Schichtwechsel Bei Änderungen des Maschinenaufbaus Bei jeder Netz einschaltung des Systems Bei kontinuierlichen Betrieb der Maschine müssen diese Prüfungen in Intervallen von maximal 24 Stunden durchgeführt werden.</td>
<td>Karte für die tägliche Überprüfung (Banner Ident-Nr. 113361 für die Modelle SLS.. und 118173 für die Modelle SLSC..) Eine Kopie der Prüfergebnisse muss aufgezeichnet und an einem geeigneten Ort aufbewahrt werden (zum Beispiel in der Nähe der Maschine oder in einem speziellen Ordner für die Maschine).</td>
<td>Autorisierte Person oder qualifizierte Person</td>
</tr>
<tr>
<td>Halbjährliche Überprüfung</td>
<td>Alle sechs Monate nach Installation des Systems bzw. nach jeder Änderung an der Anlage (entweder eine neue Konfiguration des EZ-SCREEN oder Änderungen an der Maschine).</td>
<td>Karte für die halbjährliche Überprüfung (Banner Ident-Nr. 113362) Eine Kopie der Prüfergebnisse muss aufgezeichnet und an einem geeigneten Ort aufbewahrt werden (zum Beispiel in der Nähe der Maschine oder in einem speziellen Ordner für die Maschine).</td>
<td>Qualifizierte Person</td>
</tr>
</tbody>
</table>

7.2 Inbetriebnahmeprüfung

WARNUNG:
- **Das System erst verwenden, wenn die Überprüfungen abgeschlossen sind**
- **Der Versuch, die überwachte/gesteuerte Maschine zu verwenden, bevor diese Prüfungen abgeschlossen sind, könnte schwere oder tödliche Verletzungen zur Folge haben.**
- **Wenn nicht alle diese Kontrollen durchgeführt werden können, ist von der Benutzung des Sicherheitssystems abzusehen, das die Banner-Vorrichtung und die überwachte/gesteuerte Maschine enthält, bis der Defekt bzw. das Problem behoben wurde.**

Führen Sie diese Prüfungen im Rahmen der Systeminstallation durch, nachdem das System an die überwachte Maschine angeschlossen wurde, bzw. jedes Mal, wenn am System Änderungen vorgenommen werden (entweder eine neue Konfiguration des EZ-SCREEN oder Änderungen an der Maschine). Das Verfahren muss von einer qualifizierten Person durchgeführt werden. Die Überprüfungsergebnisse müssen aufgezeichnet und an oder in der Nähe der überwachten Maschine aufbewahrt werden, wobei die geltenden Normen zu beachten sind.

Das System muss für diese Überprüfungen konfiguriert werden:

2. Prüfen, ob der EZ-SCREEN für die beabsichtigte Anwendung konfiguriert ist.
3. Prüfen, dass der Sicherheitsabstand (Mindestabstand) zwischen der nächstgelegenen Gefahrstelle der überwachten Maschine und dem Schutzfeld nicht geringer als der errechnete Sicherheitsabstand ist (siehe Berechnung des Sicherheitsabstands (Mindestabstand) auf Seite 20).

4. Folgendes überprüfen:
 - Dass der Zugang zu gefährlichen Teilen der überwachten Maschine aus keiner Richtung möglich ist, die nicht vom EZ-SCREEN-System, einer festen oder einer zusätzlichen Schutzeinrichtung überwacht wird, und
 - dass es für keine Person möglich ist, zwischen dem Schutzfeld und gefährlichen Maschinenteilen zu stehen, oder
 - dass zusätzliche Schutzeinrichtungen und feste Schutzeinrichtungen entsprechend den jeweiligen Sicherheitsnormen an Stellen (zwischen Schutzfeld und Gefahrenzonen), an denen sich eine Person vom EZ-SCREEN unbemerkt aufhalten kann, entsprechend den jeweiligen Sicherheitsnormen angebracht sind und ordnungsgemäß funktionieren.

5. Bei Verwendung prüfen, ob alle Reset-Schalter außerhalb des Schutzfeldes, aber mit vollständiger Sicht auf das Schutzfeld und vom Schutzfeld aus unzugänglich montiert sind und ob Vorrichtungen zur Vermeidung versehentlicher Betätigung vorhanden sind.

9. Die Statusanzeigen und das Diagnose-Display beachten:
 - **Sperrenzustand:** Statusanzeige blinkt rot, alle anderen Anzeigen sind ausgeschaltet.
 - **Blockiert:** Statusanzeige leuchtet rot, eine oder mehrere Zonenanzeigen leuchten rot, Reset-Anzeige leuchtet gelb.
 - **Frei:** Statusanzeige leuchtet grün.; alle Zonen-Anzeigen leuchten grün; Reset-Anzeige leuchtet gelb.
 - **Verriegelung:** (Schutzfeld frei) Statusanzeige leuchtet rot; alle Zonen-Anzeigen leuchten grün, Reset-Anzeige blinkt gelb im Doppeltakt.

Wichtig: Bei den folgenden Prüfungen darf keine Person Gefahren ausgesetzt werden.

WARNUNG:
- Vor dem Einschalten der Spannungsversorgung oder dem Zurücksetzen des Systems muss das Schutzfeld erst geräumt werden.
- Andernfalls könnte es zu schweren oder tödlichen Verletzungen kommen.
- Sicherstellen, dass sich im überwachten Bereich kein Personal und keine unerwünschten Materialien befinden, bevor die Spannungsversorgung zur überwachten Maschine eingeschaltet oder das System zurückgesetzt wird.

12. Die Versorgungsspannung zur überwachten Maschine einschalten und darauf achten, dass die Maschine nicht startet.

13. Das im Lieferumfang enthaltene Testobjekt in das entsprechende Schutzfeld einführen, um es zu unterbrechen (zu blockieren). Es darf nicht möglich sein, die überwachte Maschine in Gang zu setzen, solange mindestens ein Lichtstrahl blockiert ist.

Die Statusanzeige blinkt grün, wenn die reduzierte Auflösung aktiviert ist.

15. Das Testobjekt aus dem Schutzfeld entfernen. Die Maschine darf dabei nicht automatisch wiederanlaufen, und für den Wiederanlauf der Maschine müssen die Auslösevorrichtungen betätigt werden.

17. Mit einem zu diesem Zweck geeigneten Gerät überprüfen, ob die Maschinenstopzeit dieselbe oder kürzer ist als die vom Hersteller der Maschine spezifizierte Gesamtansprechzeit.

Den Betrieb des Systems nicht fortsetzen, solange die Überprüfung nicht komplett durchgeführt wurde und alle Probleme behoben wurden.

7.3 Tägliche Überprüfungsroute/Überprüfungsroute bei Schichtwechsel

Führen Sie bei jedem Schichtwechsel, bei jeder Netzeinschaltung und bei jeder Änderung der Maschineneinstellung das auf der Prüfkarte für die tägliche Überprüfung angegebene Verfahren durch. Bei kontinuierlichem Betrieb der Maschine müssen diese Prüfungen in Intervallen von maximal 24 Stunden durchgeführt werden.

Das Verfahren muss von einer autorisierten Person oder einer qualifizierten Person (gemäß der Definition in Glossar auf Seite 91) durchgeführt werden. Die Ergebnisse der Überprüfung sollten aufgezeichnet und eine Kopie dieser Aufzeichnung an einem geeigneten Ort aufbewahrt werden (z. B. in der Nähe der Maschine oder im technischen Ordner der Maschine).

7.4 Halbjährliche Überprüfung (alle sechs Monate)

Das Verfahren zur halbjährlichen Überprüfung muss alle sechs Monate ab der Installation des Systems und nach jeder Veränderung am System (neue Konfiguration des EZ-SCREEN oder Veränderungen an der Maschine) durchgeführt werden.

Das Verfahren muss von einer qualifizierten Person (gemäß der Definition in Glossar auf Seite 91) durchgeführt werden. Die Ergebnisse der Überprüfung sollten aufgezeichnet und eine Kopie dieser Aufzeichnung an einem geeigneten Ort aufbewahrt werden (z. B. in der Nähe der Maschine oder im technischen Ordner der Maschine).

Das Verfahren ist auf der Prüfkarte für die halbjährliche Überprüfung (Banner Ident-Nr. 113362) beschrieben. Diese ist in dem Dokumentationspaket enthalten, das Sie zusammen mit dem Empfänger erhalten haben. Wenn die Prüfkarte für die halbjährliche Überprüfung fehlt, wenden Sie sich an Banner Engineering oder laden Sie die Prüfkarte von http://www.bannerengineering.com herunter.
8 Kaskade

8.1 Überblick über Kaskaden

Die Sender und Empfänger für den EZ-SCREEN sind auch in kaskadierbaren Ausführungen erhältlich. Diese Modelle können als eigenständige Lichtvorhänge oder in Kaskaden von bis zu vier Systemen verwendet werden. Die in Kaskade geschalteten Sensorpaare können jede beliebige Länge, jede beliebige Anzahl von Strahlen oder unterschiedliche Auflösungen haben (14 mm und 30 mm), solange jeder Sender zu seinem Empfänger passt.

Eine spezielle Verkabelung ist nicht erforderlich, aber die beidseitig vorkonfektionierten 22-AWG-Kabelsätze werden empfohlen. Pigtail-Modelle mit Schnellanschluss können verwendet werden, um die Anzahl der erforderlichen Kabel zu reduzieren. Die Ansprechzeit hängt von der Anzahl der Strahlen im Lichtvorhang und der Position des Lichtvorhangs in der Kaskade ab. Die maximale Systemansprechzeit lässt sich für diese kaskadierten Systeme auf zwei Arten einfach berechnen:

- für jeden Lichtvorhang in der Kaskade einzeln (der Sicherheitsabstand wird für jeden Lichtvorhang in der Kaskade berechnet), oder
- auf der Grundlage des ungünstigsten Maximums für die gesamte Kaskade (alle Lichtvorhänge in der Kaskade haben denselben Abstand).

Anmerkung: EZ-SCREEN SLS-Modelle (mit invertiertem Display) können als Endsensorpaar verwendet werden.

Der Empfänger hat einen 8-poligen Stecker für Stromversorgung, Erde, Reset, EDM 1 und EDM 2 sowie OSSD 1 und OSSD 2. Alle Systeme in einer Kaskade aktivieren denselben Satz OSSD-Ausgänge, d. h. die OSSDs des Hauptempfängers.

Anmerkung: In einem kaskadierten System sind alle Empfänger miteinander verbunden, und alle Sender sind miteinander verbunden.

8.2 Systemkomponenten und Spezifikationen

Ein eigenständiges, kaskadierbares EZ-SCREEN-System enthält jeweils einen kompatiblen Sender und Empfänger (von gleicher Länge und Auflösung; einzeln oder paarweise erhältlich), einen Abschlussstecker für den Empfänger und zwei einseitig vorkonfektionierte (Maschinenanschluss-)Kabel.

Ein EZ-SCREEN-System mit mehreren kaskadierten Lichtvorhängen umfasst (bis zu 4) kompatible Sender-Empfänger-Paare, einen Abschlussstecker für den letzten Empfänger in der Kaskade, zwei einseitig vorkonfektionierte Kabel für den Anschluss an die Maschine und an die Stromversorgung des Systems sowie beidseitig vorkonfektionierte (Sensoranschluss-)Kabelpaare für den Anschluss der Sender und Empfänger in der Kaskade aneinander.
Der Abschlussstecker muss bei einem eigenständigen System auf dem Empfänger verwendet werden, bei einer Kaskade aus mehreren Systemen hingegen auf dem letzten Empfänger, oder ein Kabel vom Typ QDE2R4-8..D muss mit einem Not-Halt-Schalter oder anderen festverdrahteten Kontakten verbunden werden (siehe Not-Halt-Schalter und Selb-/Kabelzüge auf Seite 71 und Sicherheitsschalter mit Zwangsöffnung auf Seite 74).

Erhältliche einseitig und beidseitig vorkonfektionierte Kabel und vorkonfektionierte Verteiler sind in Anschlussleitungen auf Seite 16 aufgeführt. Die Kabellängen sind begrenzt − sowohl für die Stromkabel als auch für die Verbindungskabel; siehe Ermitteln der Länge von Anschlusskabeln auf Seite 65 für weitere Informationen.

8.2.1 Kaskadierbare Sender- und Empfängermodelle mit 14 mm Auflösung

Die kaskadierbaren Modelle mit 14 mm Auflösung haben eine Reichweite von 0,1 m bis 6 m (4 in bis 20 ft). Es sind nur Modelle mit 8-poligem Schnellanschluss aufgeführt; die Verdrahtung der 8-poligen Sender/Empfänger ist „vertauschbar“. Siehe Elektrische Anschlüsse vor der Inbetriebnahme auf Seite 32 und Sensor-Austauschbarkeit auf Seite 44.

Zu Verkabelungsoptionen siehe Anschlussleitungen auf Seite 16.

Maschinenanschlusskabel/Stromversorgungskabel (eins pro Endsensor, zwei pro Paar): Kabel vom Typ QDE-..D verwenden.

Sensoranschlusskabel (eins pro kaskadiertem Sensor, zwei pro Paar): Kabel vom Typ DEE2R-..D verwenden.

Schutzfeldhöhe\[12\] \begin{tabular}{|c|c|c|c|c|}
\hline
Sender (8-polig) & Empfänger & Sender-Empfänger-Paar & Strahlenanzahl & Ansprechzeit (Tₜ) (ms) \\
\hline
300 mm (11,8 in) & SLSCE14-300Q8 & SLSCE14-300Q8 & SLSCE14-300Q8 & 40 & 15 \\
450 mm (17,7 in) & SLSCE14-450Q8 & SLSCE14-450Q8 & SLSCE14-450Q8 & 60 & 19 \\
600 mm (23,6 in) & SLSCE14-600Q8 & SLSCE14-600Q8 & SLSCE14-600Q8 & 80 & 23 \\
750 mm (29,5 in) & SLSCE14-750Q8 & SLSCE14-750Q8 & SLSCE14-750Q8 & 100 & 27 \\
900 mm (35,4 in) & SLSCE14-900Q8 & SLSCE14-900Q8 & SLSCE14-900Q8 & 120 & 32 \\
1050 mm (41,3 in) & SLSCE14-1050Q8 & SLSCE14-1050Q8 & SLSCE14-1050Q8 & 140 & 36 \\
1200 mm (47,2 in) & SLSCE14-1200Q8 & SLSCE14-1200Q8 & SLSCE14-1200Q8 & 160 & 40 \\
1350 mm (53,1 in) & SLSCE14-1350Q8 & SLSCE14-1350Q8 & SLSCE14-1350Q8 & 180 & 43 \\
1500 mm (59 in) & SLSCE14-1500Q8 & SLSCE14-1500Q8 & SLSCE14-1500Q8 & 200 & 48 \\
1650 mm (65 in) & SLSCE14-1650Q8 & SLSCE14-1650Q8 & SLSCE14-1650Q8 & 220 & 52 \\
1800 mm (70,9 in) & SLSCE14-1800Q8 & SLSCE14-1800Q8 & SLSCE14-1800Q8 & 240 & 56 \\
\hline
\end{tabular}

Andere verfügbare Modelle:

Um die 5-poligen Sendermodelle mit Testeingang zu bestellen, ersetzen Sie die Endung „Q8“ durch „Q5“, (z. B. SLSCE14-300Q5), und für das Paar ersetzen Sie „Q88“ durch „Q85“ (z. B. SLSCP14-300Q85). Wenn ein 5-poliger Sender in einem kaskadierten System in der ersten („Master“)-Position verwendet wird, müssen in den übrigen Positionen in dieser Kaskade 5-polige Sender verwendet werden.

Um den Pigtail-Schnellanschluss (nur 8-polige Modelle) zu bestellen, ersetzen Sie das „Q“ in der Typenbezeichnung durch ein „P“ (z. B. SLSCE14-300P8).

Um die ESD-sicheren Modelle zu bestellen, fügen Sie vor der Bezeichnung der Schnellanschlussoption ein „N“ an die Typenbezeichnung an (z.B. SLSCE14-300NQB). Ausführungen mit Schutz gegen elektrostatische Entladungen sind nicht mit Pigtail-Schnellanschluss erhältlich.

Folgende optionale Gehäuseausführungen sind erhältlich: Fügen Sie den Code für das Modell vor der Schnellanschlusskennzeichnung in der Typenbezeichnung hinzu:

- Fügen Sie für eine Oberflächenausführung in klarem (gebürsteten) eloxierten Aluminium und schwarze Endkappen ein „A“ hinzu (z. B. SLSCE14-300AQ8),
- fügen Sie für eine vernickelte („silberne“) Oberflächenausführung und schwarze Endkappen ein „S“ hinzu (z. B. SLSCE14-300SQ8),
- fügen Sie für eine schwarz lackierte Oberflächenausführung und schwarze Endkappen ein „B“ hinzu (z. B. SLSCE14-300BQ8),

\[12\] * 150 mm SLSC..-Systeme nicht erhältlich.

www.bannerengineering.com 63
• fügen Sie für eine weiß lackierte Oberfläche und schwarze Endkappen ein „W“ hinzu (z. B. SLSCE14-300WQ8),
• fügen Sie für eine in „Sicherheits-Orange“ lackierte Oberfläche und schwarze Endkappen „SO“ hinzu (z. B. SLSCE14-300SOQ8).

8.2.2 Kaskadierbare Sender- und Empfängermodelle mit 30 mm Auflösung

Zu Verkabelungsoptionen siehe Anschlussleitungen auf Seite 16. Es sind nur Modelle mit 8-poligem Schnellanschluss aufgeführt; die Verdrahtung der 8-poligen Sender/Empfänger ist „vertauschbar“. Siehe Elektrische Anschlüsse vor der Inbetriebnahme auf Seite 32 und Sensor-Austauschbarkeit auf Seite 44.

Maschinenanschlusskabel/Stromversorgungskabel (eins pro Endsensor, zwei pro Paar): Kabel vom Typ QDE-..D verwenden.
Sensoranschlusskabel (eins pro kaskadiertem Sensor, zwei pro Paar): Kabel vom Typ DEE2R-..D verwenden.

<table>
<thead>
<tr>
<th>Schutzfeldhöhe</th>
<th>Sender (8-polig)</th>
<th>Empfänger</th>
<th>Sender-Empfänger-Paar</th>
<th>Strahlenanzahl</th>
<th>Ansprechzeit (Tr) (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 mm (11,8 in)</td>
<td>SLSCE30-300Q8</td>
<td>SLSCR30-300Q8</td>
<td>SLSCP30-300Q88</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>450 mm (17,7 in)</td>
<td>SLSCE30-450Q8</td>
<td>SLSCR30-450Q8</td>
<td>SLSCP30-450Q88</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>600 mm (23,6 in)</td>
<td>SLSCE30-600Q8</td>
<td>SLSCR30-600Q8</td>
<td>SLSCP30-600Q88</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>750 mm (29,5 in)</td>
<td>SLSCE30-750Q8</td>
<td>SLSCR30-750Q8</td>
<td>SLSCP30-750Q88</td>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>900 mm (35,4 in)</td>
<td>SLSCE30-900Q8</td>
<td>SLSCR30-900Q8</td>
<td>SLSCP30-900Q88</td>
<td>60</td>
<td>19</td>
</tr>
<tr>
<td>1050 mm (41,3 in)</td>
<td>SLSCE30-1050Q8</td>
<td>SLSCR30-1050Q8</td>
<td>SLSCP30-1050Q88</td>
<td>70</td>
<td>21</td>
</tr>
<tr>
<td>1200 mm (47,2 in)</td>
<td>SLSCE30-1200Q8</td>
<td>SLSCR30-1200Q8</td>
<td>SLSCP30-1200Q88</td>
<td>80</td>
<td>23</td>
</tr>
<tr>
<td>1350 mm (53,1 in)</td>
<td>SLSCE30-1350Q8</td>
<td>SLSCR30-1350Q8</td>
<td>SLSCP30-1350Q88</td>
<td>90</td>
<td>25</td>
</tr>
<tr>
<td>1500 mm (59 in)</td>
<td>SLSCE30-1500Q8</td>
<td>SLSCR30-1500Q8</td>
<td>SLSCP30-1500Q88</td>
<td>100</td>
<td>27</td>
</tr>
<tr>
<td>1650 mm (65 in)</td>
<td>SLSCE30-1650Q8</td>
<td>SLSCR30-1650Q8</td>
<td>SLSCP30-1650Q88</td>
<td>110</td>
<td>30</td>
</tr>
<tr>
<td>1800 mm (70,9 in)</td>
<td>SLSCE30-1800Q8</td>
<td>SLSCR30-1800Q8</td>
<td>SLSCP30-1800Q88</td>
<td>120</td>
<td>32</td>
</tr>
<tr>
<td>1950 mm (76,8 in)</td>
<td>SLSCE30-1950Q8</td>
<td>SLSCR30-1950Q8</td>
<td>SLSCP30-1950Q88</td>
<td>130</td>
<td>32</td>
</tr>
<tr>
<td>2100 mm (82,7 in)</td>
<td>SLSCE30-2100Q8</td>
<td>SLSCR30-2100Q8</td>
<td>SLSCP30-2100Q88</td>
<td>140</td>
<td>36</td>
</tr>
<tr>
<td>2250 mm (88,6 in)</td>
<td>SLSCE30-2250Q8</td>
<td>SLSCR30-2250Q8</td>
<td>SLSCP30-2250Q88</td>
<td>150</td>
<td>38</td>
</tr>
<tr>
<td>2400 mm (94,5 in)</td>
<td>SLSCE30-2400Q8</td>
<td>SLSCR30-2400Q8</td>
<td>SLSCP30-2400Q88</td>
<td>160</td>
<td>40</td>
</tr>
</tbody>
</table>

Andere verfügbare Modelle:

Um die 5-poligen Sender mit den Testeingangsmodellen zu bestellen, ersetzen Sie die Endung „Q8“ durch „Q5“, (z. B. SLSCE30-300Q5), und für das Paar ersetzen Sie „Q88“ durch „Q85“ (z. B. SLSCP30-300Q85). Wenn ein 5-poliger Sender in einem kaskadierten System in der ersten („Master“-)Position verwendet wird, müssen in den übrigen Positionen in dieser Kaskade 5-polige Sender verwendet werden.

Um das Modell mit Pigtail-Schnellanschluss (nur 8-polige Modelle) zu bestellen, ersetzen Sie das „Q“ in der Typenbezeichnung durch ein „P“ (z. B. SLSCE30-300P8).

Um die ESD-sicheren Modelle zu bestellen, fügen Sie vor der Kennzeichnung der Schnellanschlussoption ein „N“ an die Typenbezeichnung an (z. B. SLSCE30-300NQ8). Ausführungen mit Schutz gegen elektrostatische Entladungen sind nicht mit Pigtail-Schnellanschluss erhältlich.

Folgende optionale Gehäuseausführungen sind erhältlich: Fügen Sie den Code für das Modell vor der Schnellanschlusskennzeichnung in der Typenbezeichnung hinzu:
• Fügen Sie für eine Oberflächenausführung in klarem (gebürsteten) eloxierten Aluminium und schwarze Endkappen ein „A“ hinzu (z. B. SLSCE30-300AQ8),
• fügen Sie für eine vernickelte („silberne“) Oberflächenausführung und schwarze Endkappen ein „S“ hinzu (z. B. SLSCE30-300SQ8),
• fügen Sie für eine schwarz lackierte Oberflächenausführung und schwarze Endkappen ein „B“ hinzu (z. B. SLSCE30-300BQ8),
• fügen Sie für eine weiβ lackierte Oberfläche und schwarze Endkappen ein „W“ hinzu (z. B. SLSCE30-300WQ8),
• fügen Sie für eine in „Sicherheits-Orange“ lackierte Oberfläche und schwarze Endkappen „SO“ hinzu (z. B. SLSCE30-300SOQ8).

* 150 mm SLSC..-Systeme nicht erhältlich.
8.3 Empfänger-Display

Im RUN-Modus zeigt die 7-stellige Anzeige Folgendes an:

<table>
<thead>
<tr>
<th>Zustand</th>
<th>Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frei-Zustand – Betrieb des Verriegelungsausgangs</td>
<td></td>
</tr>
<tr>
<td>Frei-Zustand – Betrieb des Schaltausgangs</td>
<td></td>
</tr>
<tr>
<td>Blockiert</td>
<td>Anzahl blockierter Strahlen (sequenziell)</td>
</tr>
<tr>
<td>CSSI-Eingang aus oder offen (z. B. „vorgeschalteter“ Empfänger blockiert oder im Sperrzustand)</td>
<td>Konstant leuchtend (nicht blinkend)</td>
</tr>
</tbody>
</table>

8.4 Ermitteln der Länge von Anschlusskabeln

Tabelle 4. Kabellängenoptionen für zwei kaskadierte Lichtvorhänge

<table>
<thead>
<tr>
<th>Empfohlene Kabelpaare pro Seite des kaskadierten Systems</th>
<th>Maschinenanschlusskabel (L1) QDE-...D</th>
<th>1 ft</th>
<th>3 ft</th>
<th>15 ft</th>
<th>25 ft</th>
<th>50 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximal L2</td>
<td>100 ft</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Beispiel 1:
Maschinenanschlusskabel (L1): 15 ft
Sensoranschlusskabel (L2): 175 ft (bei Verwendung eines 100-ft- und eines 75-ft-Kabels vom Typ DEE2R) oder bis zu 100 ft bei Verwendung von Einzelkabeln

Beispiel 2:
Maschinenanschlusskabel (L1): 50 ft
Sensoranschlusskabel (L2): bis zu 50 ft

Es können mehrere Kabel vom Typ DEE2R-..D erforderlich sein.
Tabelle 5. Kabellängenoptionen für drei kaskadierte Lichtvorhänge

<table>
<thead>
<tr>
<th>Maschinenanschlusskabel (L1) QDE-..D</th>
<th>1 ft</th>
<th>3 ft</th>
<th>15 ft</th>
<th>25 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L2 (ft)</td>
<td>L3 (ft)</td>
<td>L2 (ft)</td>
<td>L3 (ft)</td>
</tr>
<tr>
<td>Max. L2 (ft)</td>
<td>115</td>
<td>1</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>Max. L3 (ft)</td>
<td>1</td>
<td>200</td>
<td>1</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensoranschlusskabel (L2, L3) Einzelkabel vom Typ DEE2R-..D</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 15 100 15</td>
<td></td>
</tr>
<tr>
<td>75 75 75 50 75 15</td>
<td></td>
</tr>
<tr>
<td>50 100 50 100 50 50</td>
<td></td>
</tr>
<tr>
<td>25 100 25 100 25 25</td>
<td></td>
</tr>
<tr>
<td>15 100 15 100 15 15</td>
<td></td>
</tr>
<tr>
<td>3 100 3 100 3 100</td>
<td></td>
</tr>
<tr>
<td>1 100 1 100 1 100</td>
<td></td>
</tr>
</tbody>
</table>

Beispiel 1:
Maschinenanschlusskabel (L1): 3 ft
Sensoranschlusskabel (L2): 75 ft
Sensoranschlusskabel (L3): 50 ft

Beispiel 2:
Maschinenanschlusskabel (L1): 15 ft
Sensoranschlusskabel (L2): 75 ft
Sensoranschlusskabel (L3): 15 ft

Tabelle 6. Kabellängenoptionen für vier kaskadierte Lichtvorhänge

<table>
<thead>
<tr>
<th>Maschinenanschlusskabel (L1) QDE-..D</th>
<th>1 ft</th>
<th>3 ft</th>
<th>15 ft</th>
<th>25 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L2</td>
<td>L3</td>
<td>L4</td>
<td>L2</td>
</tr>
<tr>
<td>Max. L3</td>
<td>1 ft</td>
<td>15</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>1 ft</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Aufzeichnung und Formatierung der Informationen ist optional. Es kann mehrere Kabel vom Typ DEE2R-..D erforderlich sein.
Beispiel 1:
Maschinenanschlusskabel (L1): 15 ft
Sensoranschlusskabel (L2): 1 ft
Sensoranschlusskabel (L3): 75 ft
Sensoranschlusskabel (L4): 1 ft

Beispiel 2:
Maschinenanschlusskabel (L1): 15 ft
Sensoranschlusskabel (L2): 3 ft
Sensoranschlusskabel (L3): 50 ft
Sensoranschlusskabel (L4): 3 ft

8.5 Ansprechzeit für kaskadierte Lichtvorhänge

Die Ansprechzeit ist ein wichtiger Faktor bei der Ermittlung des Sicherheitsabstands (Mindestabstands) für einen Lichtvorhang. Bei in Kaskade geschalteten EZ-SCREEN-Systemen hängt die Ansprechzeit von der Anzahl der Lichtvorhänge, der Anzahl der Strahlen in den Lichtvorhängen und ihren Positionen in der Kaskade ab. Es gibt zwei einfache Möglichkeiten der Berechnung:

- Auf der Grundlage der ungünstigsten Ansprechzeit für die gesamte Kaskade (wobei alle Lichtvorhänge in der Kaskade denselben Abstand haben)
- Für jeden Lichtvorhang in der Kaskade einzeln (der Sicherheitsabstand wird für jeden Lichtvorhang in der Kaskade berechnet)

WARNUNG:
- Das Gerät richtig installieren
- Bei Nichtbeachtung der Installationsanleitung wird die Funktion des Banner-Geräts möglicherweise unwirksam oder fällt aus. Dies könnte einen unsicheren Zustand mit schweren oder tödlichen Verletzungen als Folge bedingen.
- Befolgen Sie alle Installationsanweisungen.
8.5.1 Individuelle Ansprechzeit und Sicherheitsabstand

Bei der Berechnung des individuellen Sicherheitsabstands für jedes Sender-Empfänger-Paar wird die Ansprechzeit des Paares von seiner Position in der Kaskade beeinträchtigt, die sich wiederum auf den Sicherheitsabstand auswirkt. Diese Methode ergibt den nächstmöglichen Sicherheitsabstand für jeden Lichtvorhang.

Die Ansprechzeit hängt davon ab, wie weit der Lichtvorhang von der Maschinensteuerung entfernt ist. Mit jeder Lichtvorhangposition in der Kaskade ab dem ersten Lichtvorhang in der Kaskade erhöht sich die Ansprechzeit des Lichtvorhanges um 2 ms.

Bei einem 300 mm EZ-SCREEN Sender-Empfänger-Paar mit einer Auflösung von 14 mm hat jeder Sensor eine Grundansprechzeit von 15 ms.

Das Sensorpaar an Position 1 (das direkt an die Maschinensteuerung angeschlossen ist) bleibt bei der Ansprechzeit von 15 ms. Die Ansprechzeit für das zweite Paar in der Kaskadenschaltung erhöht sich um 2 ms auf 17 ms, für das dritte Paar um 4 ms auf 19 ms und für das vierte Paar um 6 ms auf 21 ms.

Die für US-Anwendungen verwendete Formel (es können andere Normen gelten) zur Berechnung des Sicherheitsabstands für die individuelle Platzierung jedes Sender-Empfänger-Paares im kaskadierten System lautet:

- Position 1: $D_s = K(T_s + T_r) + D_{pf}$
- Position 2: $D_s = K(T_s + T_r + 2\text{ ms}) + D_{pf}$
- Position 3: $D_s = K(T_s + T_r + 4\text{ ms}) + D_{pf}$
- Position 4: $D_s = K(T_s + T_r + 6\text{ ms}) + D_{pf}$

Ermitteln Sie den individuellen Sicherheitsabstand (D_s) mit den oben Formeln anstelle der D_s-Formel in Berechnung des Sicherheitsabstands (Mindestabstand) auf Seite 20. Dadurch wird sichergestellt, dass sich jedes Sensorpaar in einem ausreichenden Abstand von der Gefahr befindet.

8.5.2 Gesamtreaktionszeit und Sicherheitsabstand (Mindestabstand)

Die Gesamtansprechzeit des kaskadierten Systems (T_r) ist gleich der Ansprechzeit des individuellen Sensorpaars mit den meisten Strahlen (d. h. der langsamsten individuellen Ansprechzeit) plus einer zusätzlichen Zeit, die aus der Anzahl der Systeme in der Kaskade resultiert. T_r kann durch die folgende Formel ermittelt werden:

$$T_r = T_r_{\text{max}} + [(N-1) \times 2\text{ ms}]$$

wobei:

- T_r_{max} die Ansprechzeit des langsamsten individuellen Paars in der Kaskade ist (d. h. des Paars mit den meisten Strahlen; siehe Komponenten auf Seite 14).
- N die Anzahl der Sensorpaare in der Kaskade ist.
Verwenden Sie den Tr-Wert aus der Formel in Berechnung des Sicherheitsabstands (Mindestabstand) auf Seite 20 zur Ermittlung des Gesamtsicherheitsabstands (Ds). Dadurch wird sichergestellt, dass sich alle Sensorpaare in einem ausreichenden Abstand von der Gefahr befinden, unabhängig davon, wie das System installiert ist.

Wenn Kontakte, z. B. ein Not-Halt-Taster, an einen kaskadierten Empfänger angeschlossen werden, beträgt die CSSI-Ansprechzeit 40 ms plus 2 ms für jeden zusätzlichen Lichtvorhang, ähnlich wie der Tr-Wert für das Schutzfeld.

\[\text{Tr}_{(CSSI)} = 40 \text{ ms} + [(N-1) \times 2 \text{ ms}] \]

8.5.3 Kaskadenkonfiguration vs. Ansprechzeit

Wenn Lichtbildschirme unterschiedlicher Länge oder unterschiedlicher Auflösung (und damit unterschiedlicher Ansprechzeiten) in einer Schaltung verwendet werden, kann ihre Position in der Kaskade eine Überlegung wert sein.

Die Gesamt-Systemansprechzeit für alle hier dargestellten Systeme beträgt 40 + [(3-1) x 2 ms] = 44 ms

8.6 Konfigurationseinstellungen für kaskadierte Sensoren

Die Scancodes für die einzelnen Sender- und Empfängerpaare müssen übereinstimmen. Bei kaskadierten Installationen müssen sich die Scancodes jedoch auf benachbarten Systemen abwechseln, wie in Installation mehrerer Systeme auf Seite 28 beschrieben.

WARNUNG:
- Verwendung eines Scan-Codes
- Wenn kein Scan-Code verwendet wird, kann sich ein Empfänger mit dem Signal von dem falschen Sender synchronisieren. Dadurch wird die Sicherheitsfunktion des Lichtvorhangs beeinträchtigt und es entsteht ein Gefahrenzustand, der schwere Verletzungen oder Tod zur Folge haben könnte.
- Konfigurieren Sie benachbarte Systeme so, dass sie verschiedene Scan-Codes verwenden.
 (Stellen Sie z. B. für ein System Scan-Code 1 ein und für das andere System Scan-Code 2.)
- Führen Sie einen Detektionsfunktionstest durch, um den Sicherheits-Lichtvorhang auf ordnungsgemäße Funktion zu überprüfen.

Während der Scancode, die Einstellungen für reduzierte Auflösung, feste Ausblendung und invertierte Anzeige für jedes kaskadierte Sensorpaar unabhängig sind, müssen die Einstellungen für Auslöse-/Latch-Modus und EDM durch den ersten Empfänger in der Kaskade (am nächsten an der Maschinenschnittstelle) festgelegt werden, die die OSSD-Ausgänge steuert. Alle anderen Empfänger in der Kaskade müssen auf Auslösemodus und Zweikanal-EDM eingestellt sein (werkseitige Standardinstellungen).

8.6.1 Konfigurieren für Kaskadenbetrieb

Konfigurieren Sie jedes Kaskadensystem, bevor Sie das System in einer Produktionsumgebung betreiben.

Installieren Sie vor der Konfiguration alle Sender und Empfänger, wie in Installationsanleitung auf Seite 20 und Kaskade auf Seite 62 beschrieben. Der letzte Empfänger muss entweder mit einem Abschlussstecker oder durch Verbinden zweier geschlossener mechanischer Kontakte abgeschlossen werden (siehe Not-Halt-Schalter und Seil-/Kabelzüge auf Seite 71 und Sicherheitsschalter mit Zwangsöffnung auf Seite 74).

WARNUNG:
- Verwendung eines Scan-Codes
- Wenn kein Scan-Code verwendet wird, kann sich ein Empfänger mit dem Signal von dem falschen Sender synchronisieren. Dadurch wird die Sicherheitsfunktion des Lichtvorhangs beeinträchtigt und es entsteht ein Gefahrenzustand, der schwere Verletzungen oder Tod zur Folge haben könnte.
- Konfigurieren Sie benachbarte Systeme so, dass sie verschiedene Scan-Codes verwenden.
 (Stellen Sie z. B. für ein System Scan-Code 1 ein und für das andere System Scan-Code 2.)
- Führen Sie einen Detektionsfunktionstest durch, um den Sicherheits-Lichtvorhang auf ordnungsgemäße Funktion zu überprüfen.

Führen Sie das folgende Verfahren nur am ersten Empfänger in der Kaskade aus (der sich am nächsten an der Maschinenschnittstelle befindet).

3. Der Empfänger sollte sich in einem Sperrzustand befinden oder der Strom ist ausgeschaltet.
 • Wenn die Stromversorgung aus ist: Schalten Sie sie ein.
 • Wenn sich der Empfänger in einem Sperrzustand befindet, führen Sie eine gültige Reset-Sequenz aus
 (schließen Sie den Reset-Schalter 0,25 bis 2 Sekunden lang und öffnen Sie ihn danach wieder).

Nach einem Sperrzustand oder während des Hochlaufs wird die DIP-Schalterkonfiguration als Kaskaden-Teach-
Modus erkannt und wie unten dargestellt angezeigt.
 • Auf der Anzeige für den ersten Empfänger wird Folgendes angezeigt: keine Not-Halt-Vorrichtung ver-
 • Auf der Anzeige für den letzten kaskadierten Empfänger wird Folgendes angezeigt: Abschlusswider-
 • Auf allen anderen Empfängern leuchtet „1C“.
 • Alle Zonenanzeigen des Empfängers sind ausgeschaltet.
 • Alle gelben Reset-Anzeigen des Empfängers sind ausgeschaltet.
 • Alle Statusanzeigen des Empfängers leuchten rot.

4. Um den Kaskaden-Teach-Modus zu aktivieren und zu verlassen, müssen die DIP-Schalter wieder für den Nor-
malbetrieb konfiguriert werden.

5. Führen Sie eine gültige Reset-Sequenz durch, oder schalten Sie die Stromversorgung zum System aus und
 wieder ein.

8.7 Not-Halt-Schalter und Seil-/Kabelzüge

Kaskadierbare EZ-SCREEN-Empfänger können an einen oder mehrere Not-Halt-Schalter angeschlossen werden.
Der/die Schalter müssen an das Ende des letzten Empfängers in der Kaskade anstelle des Abschlusssteckers anges-
schlossen werden. Die angeschlossenen Not-Halt-Schalter aktivieren/deaktivieren die OSSD-Ausgänge aller Empfänger
in der Kaskade.

Die zulässige Anzahl von Not-Halt-Schaltern in einer Reihenschaltung ist durch den Gesamtwiderstand pro Kanal ein-
geschränkt. Der Gesamtwiderstand ist die Summe aller Kontaktwiderstands高于 des Kanals plus Gesamtleiterwider-
stand des Kanals. Der maximale Gesamtwiderstand pro Kanal beträgt 100 Ohm.

Wichtig: Die Gleichzeitigkeitsanforderung beim Öffnen und Schließen der beiden Not-Halt-Schalter-
nkontakte beträgt 3 Sekunden. Wenn diese Anforderung beim Öffnen oder Schließen nicht erfüllt wird,
blinkt auf der Anzeige des ersten Empfängers „- - -“. Wenn die Gleichzeitigkeitsanforderung beim
Öffnen nicht erfüllt wird, kann der geschlossene Kontakt später geöffnet werden (nach mehr als 3 Se-
kunden), woraufhin beide Kontakte wieder geschlossen werden müssen.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Farbe</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Braun (bn)</td>
<td>Ch 1a</td>
</tr>
<tr>
<td>2</td>
<td>Schwarz (bk)</td>
<td>Ch 1b</td>
</tr>
<tr>
<td>3</td>
<td>Blau (bu)</td>
<td>Ch 2b</td>
</tr>
</tbody>
</table>

Abb. Kabel QDE2R4-8..D, Steckerbelegung 22 AWG

Es können auch standardmäßige 8-polige M12/Euro-Anschlussleitungen mit Schnellanschluss verwendet werden, wobei allerdings die Pin-
Nummern/Kabelfarben überprüft werden müssen.

www.bannerengineering.com 71
Kabel QDE2R4-8...D, Steckerbelegung

<table>
<thead>
<tr>
<th>Pin</th>
<th>Farbe</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Kein Anschluss</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kein Anschluss</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Kein Anschluss</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Kein Anschluss</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Weiß (wh)</td>
<td>Ch 2a</td>
</tr>
</tbody>
</table>

WARNUNG:
- **Not-Halt-Funktionen**
- Durch Muting oder Umgehen der Sicherheitsausgänge wird die Not-Halt-Funktion unwirksam.
- Wenn der Kaskadeneingang für eine Not-Halt-Funktion verwendet wird, dürfen die Sicherheitsausgänge (OSSDs) des EZ-SCREEN nicht stumm geschaltet oder überbrückt werden. Gemäß NFPA79 muss die Not-Halt-Funktion ständig aktiv bleiben.

8.7.1 Anforderungen an Not-Halt-Schalter (Zwangsoffnung)

Der Not-Halt-Schalter muss zwei Kontaktpaare enthalten, die geschlossen sein müssen, wenn der Schalter in betriebsbereiter Stellung ist. Sobald er aktiviert wurde, muss der Not-Halt-Schalter seine Kontakte öffnen und darf nur durch eine bewusste Handlung (z. B. Drehen, Ziehen oder Entriegeln) zur Position mit geschlossenen Kontakten zurückkehren.

In der Norm ANSI/NFPA 79 werden die folgenden zusätzlichen Anforderungen spezifiziert:
- Not-Halt-Schalter müssen an jedem Bedienstand und anderen Bedientafeln angebracht sein, wo eine Notabschaltung benötigt wird.
- Stopp- und Not-Halt-Schalter müssen von jedem Bedienstand und jeder Bedientafel aus, wo sie angebracht sind, jederzeit betätigt werden können.
- Beim Auslöser des Not-Halts muss es sich um einen selbstverriegelnden Schalter handeln.

Beim manchen Anwendungen kann es notwendig sein, weitere Vorschriften zu beachten. Der Anwender ist verpflichtet, sämtliche relevanten Vorschriften anzuwenden.

WARNUNG: Anschluss mehrerer Not-Halt-Schalter

Es können auch standardmäßige 8-polige M12/Euro-Anschlussleitungen mit Schnellanschluss verwendet werden, wobei allerdings die Pin-Nummern/Kabelfarben überprüft werden müssen.
8.8 Verriegelungsschalter in Kaskadensystemen

WARNUNG:
- Die Gefahrstelle darf nur durch den Erfassungsbereich zugänglich sein.
- Eine unsachgemäße Installation des Systems könnte schwere oder tödliche Verletzungen zur Folge haben.
- Durch die Installation des EZ-SCREEN muss verhindert werden, dass Personen um, unter, über oder durch das Schutzfeld in den Gefahrenbereich greifen können, ohne erfasst zu werden.

8.8.1 Anforderungen an Schutzverriegelungen

Die folgenden allgemeinen Anforderungen und Erwägungen betreffen die Installation von Verriegelungstoren und trennenden Schutzeinrichtungen. Außerdem ist darauf zu achten, dass sämtliche Anforderungen im Hinblick auf die gelten-<ref>den Vorschriften erfüllt sind.

Gefährliche Maschinen, die durch die Schutzverriegelung gesichert werden, müssen am Betrieb gehindert werden, solange die Schutzeinrichtung nicht geschlossen ist. Wenn die Schutzeinrichtung öffnet, während eine Gefahr vorliegt, muss ein Stoppbefehl an die überwachte Maschine gesendet werden. Durch das Schließen der Schutzeinrichtung allein darf die gefährliche Maschinenbewegung nicht initiiert werden. Dazu muss ein separater Vorgang erforderlich sein. Die Sicherheitsschalter dürfen nicht als mechanischer Anschlag oder für die Endlagen-Abschaltung verwendet werden.

Die Schutzeinrichtung muss in ausreichender Entfernung vom Gefahrenbereich aufgestellt werden (damit die gefährliche Maschinenbewegung anhaltend ge-<ref>halten kann, bevor die Schutzeinrichtung so weit öffnet, dass der Zugang zur Gefahrstelle ermöglicht wird). Sie muss sich entweder seitwärts oder von der Gefahrstelle weg öffnen und nicht in den überwachten Bereich hinein. Je nach Anwendung sollte die Schutzeit oder das Schutztor nicht selbsttätig schließen und die Verriegelungsschaltung aktivieren. Darüber hinaus muss die Installation verhindern, dass Personal über, unter, durch oder um die Schutzeinrichtung herum greifen und die überwachte Gefahrstelle erreichen kann. Öffnungen in der Schutzeinrichtung dürfen den Zugang zur Gefahrstelle nicht erlauben (siehe ANSI B11.19 oder die geeignete Norm). Die Schutzeinrichtung muss stark genug und so ausgelegt sein, dass Personen im überwachten Bereich geschützt sind und ein Aus- treten der Gefahren aus dem überwachten Bereich durch Auswerfen, Herunterfallen oder Ausgabe durch die Maschine verhindert wird.

EZ-SCREEN® 14/30 mm Sicherheits-Lichtvorhang
8.8.2 Sicherheitsschalter mit Zwangsöffnung

Abbildung 29. Überwachung von zwei zwangsgeöffneten Sicherheitsschaltern

Diese Anwendung erfüllt mindestens die Anforderungen für Steuerungszuverlässigkeit gemäß OSHA sowie die Sicherheitskategorie 4 gemäß ISO 13849-1.

| Kabel QDE2R4-8..D, Steckerbelegung |
|---|---|---|
| Pin | Farbe | Beschreibung |
| 1 | Braun (bn) | Ch 1a |
| 2 | Schwarz (bk) | Ch 1b |
| 3 | Blau (bu) | Ch 2b |
| 4 | Kein Anschluss |
| 5 | Kein Anschluss |
| 6 | Kein Anschluss |
| 7 | Kein Anschluss |
| 8 | Weiß (wh) | Ch 2a |

8.8.3 Überwachung von Sicherheitsschaltern mit Zwangsöffnung in Reihenschaltung

Bei der Überwachung von zwei einzeln montierten Sicherheitsschaltern (wie in Abbildung 29 auf Seite 74) wird ein fehlerhafter Schalter erkannt, wenn er beim Öffnen der Schutzeinrichtung nicht schaltet. In diesem Fall schaltet der EZ-Screen seinen OSSD-Ausgang ab und deaktiviert seine Reset-Funktion, bis die Eingangsanforderungen erfüllt sind (d. h. der fehlerhafte Schalter wird ersetzt). Wenn jedoch eine Reihe von Sicherheitsschaltern mit Verriegelung vom EZ-Screen überwacht wird, kann der Ausfall eines Schalters im System entweder maskiert oder gar nicht erkannt werden.

Es können auch standardmäßige 8-polige M12/Euro-Anschlussleitungen mit Schnellanschluss verwendet werden, wobei allerdings die Pin-Nummern/Kabelfarben überprüft werden müssen.
Abbildung 30. Überwachung von Sicherheitsschaltern mit Zwangsöffnung an mehreren Toren

<table>
<thead>
<tr>
<th>Pin</th>
<th>Farbe</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Braun (bn)</td>
<td>Ch 1a</td>
</tr>
<tr>
<td>2</td>
<td>Schwarz (bk)</td>
<td>Ch 1b</td>
</tr>
<tr>
<td>3</td>
<td>Blau (bu)</td>
<td>Ch 2b</td>
</tr>
<tr>
<td>4</td>
<td>Kein Anschluss</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kein Anschluss</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Kein Anschluss</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Kein Anschluss</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Weiß (wh)</td>
<td>Ch 2a</td>
</tr>
</tbody>
</table>

WARNUNG:
- Keine Anwendung der Sicherheitskategorie 4
- Wird die ordnungsgemäße Funktion der einzelnen Schalter nicht überprüft, kann dies zu schweren Verletzungen oder zum Tod führen.
- Bei der Überwachung mehrerer Schutzeinrichtungen mit einer Reihenschaltung mehrerer Sicherheitsverriegelungsschalter kann es vorkommen, dass ein einzelner Fehler maskiert oder nicht erkannt wird. Wenn eine solche Konfiguration verwendet wird, überprüfen Sie regelmäßig die ordnungsgemäße Funktion der einzelnen Schalter.

In Reihe geschaltete, zwangsgeöffnete Verriegelungsschalterkreise entsprechen nicht der Sicherheitskategorie 4 nach ISO 13849-1 und erfüllen möglicherweise nicht die Anforderungen an die Steuerungsverlässigkeit, da ein unangemessener Reset oder ein potenzieller Verlust des Sicherheitsstoppsignals möglich ist. Ein mehrfacher Anschluss dieser Art darf nicht bei Anwendungen verwendet werden, bei denen der Verlust des Sicherheits-Stoppsignals oder ein fehlerhafter Reset zu schweren oder tödlichen Verletzungen führen könnte. Die folgenden beiden Szenarien gehen von zwei zwangsgeöffneten Sicherheitsschaltern an jeder Schutzeinrichtung aus:

Maskierung eines Fehlers. Wenn eine Schutzeinrichtung geöffnet wird, aber ein Schalter nicht öffnet, öffnet sich der redundante Sicherheitsschalter und veranlasst den EZ-SCREEN, seine Ausgänge zu deaktivieren. Wenn die fehlerhafte Schutzeinrichtung dann geschlossen wird, schließen auch beide Kaskadeneingangskanäle, aber da ein Kanal nicht geöffnet wurde, wird der EZ-SCREEN nicht zurückgesetzt.

Wenn der fehlerhafte Schalter jedoch nicht ausgetauscht und eine zweite „gute“ Schutzeinrichtung aktiviert wird (Öffnen und dann Schließen beider Kaskadeneingangskanäle), betrachtet der EZ-SCREEN den Fehler als behoben. Wenn die Eingabenforderungen scheinbar erfüllt sind, lässt der EZ-SCREEN einen Reset zu. Dieses System ist nicht mehr redundant und kann bei Ausfall des zweiten Schalters zu einem unsicheren Zustand führen (d. h. die Häufung von Fehlern führt zum Verlust der Sicherheitsfunktion).

Nicht-Erkennung eines Fehlers. Wenn eine gute Schutzeinrichtung geöffnet wird, schaltet der EZ-SCREEN seine Ausgänge ab (eine normale Reaktion). Wenn jedoch eine fehlerhafte Schutzeinrichtung geöffnet und geschlossen wird, bevor die gute Schutzeinrichtung wieder geschlossen wird, wird der Fehler an der fehlerhaften Schutzeinrichtung nicht erkannt. Auch dieses System ist nicht mehr redundant und kann zu einem Sicherheitsverlust führen, wenn der zweite Sicherheitsschalter bei Bedarf nicht mehr schaltet.

19 Es können auch standardmäßige 8-polle M12/Euro-Anschlussleitungen mit Schnellanschluss verwendet werden, wobei allerdings die Pin-Nummern/Kabelfarben überprüft werden müssen.
Die Schaltungen in beiden Szenarien erfüllen nicht von Natur aus die Anforderungen der Sicherheitsnormen, einzelne Fehler zu erkennen und den nächsten Zyklus zu verhindern. In Systemen mit mehreren Schutzeinrichtungen, die in Reihe geschaltete Sicherheitsschalter mit Zwangsöffnung verwenden, ist es wichtig, die Funktionsintegrität jeder verriegelten Schutzeinrichtung periodisch einzeln zu überprüfen.

Bediener, Wartungspersonal und andere Personen, die mit dem Betrieb der Maschine in Verbindung stehen, müssen darin geschult werden, solche Fehler zu erkennen, und angewiesen werden, sie unverzüglich zu beheben.

Öffnen und schließen Sie jede Schutzvorrichtung einzeln und vergewissern Sie sich gleichzeitig, dass die EZ-SCREEN-Ausgänge während des gesamten Prüfverfahrens korrekt funktionieren. Führen Sie nach jeder Torschließung einen manuellen Reset aus, falls erforderlich. Wenn ein Kontaktsatz ausfällt, wird der EZ-SCREEN seine Reset-Funktion nicht aktivieren. Wenn sich der EZ-SCREEN nicht zurücksetzt, ist möglicherweise ein Schalter ausgefallen; dieser Schalter muss sofort ersetzt werden.

Die Durchführung dieses Funktionstests und die Behebung aller Störungen muss mindestens während der regelmäßigen Überprüfungsroutinen erfolgen. Wenn derartige Störungen bei der Anwendung nicht ausgeschlossen werden können und eine solche Störung zu schweren oder tödlichen Verletzungen führen könnte, dürfen die Sicherheitsschalter nicht in Reihe geschaltet werden.
9 Fehlerbehebung

9.1 Fehlerbeseitigung und Sperrzustände

Interpretieren Sie die Statusanzeigen gemäß Statusanzeigen auf Seite 52.

Das System bietet einfache Möglichkeiten zur Ermittlung von Funktionsstörungen. Ein Sperrzustand wird wie folgt angezeigt:

<table>
<thead>
<tr>
<th>Empfänger</th>
<th>Sender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset-Anzeige</td>
<td>Statusanzeige</td>
</tr>
<tr>
<td>Statusanzeige</td>
<td>Rot blinkend</td>
</tr>
<tr>
<td>Zonenanzeigen</td>
<td>AUS</td>
</tr>
</tbody>
</table>

9.2 Behebung von Sperrzuständen

Zur Behebung eines Sperrzustands müssen alle Fehler behoben und die nachstehend beschriebene Reset-Sequenz für einen einzelnen Sensor durchgeführt werden.

9.2.1 Reset von Sender und Empfänger

Empfänger-Reset

Schließen Sie den externen Reset-Schalter 0,25 bis 2 Sekunden lang und öffnen Sie den Schalter anschließend wieder (siehe Reset-Verfahren auf Seite 51), oder unterbrechen Sie die Stromversorgung zum Sensor, warten Sie ein bis zwei Sekunden und legen Sie die Stromversorgung dann wieder an.

Sender-Reset

Schalten Sie die Versorgung zum Sensor aus, warten Sie ein bis zwei Sekunden, und schalten Sie die Versorgung wieder ein.

WARNUNG:

- Sperrzustände und Stromausfälle deuten auf ein Problem hin
- Der Versuch, den Maschinenbetrieb durch Überbrücken des Banner-Geräts oder andere Schutzeinrichtungen fortzusetzen, ist gefährlich und kann zu schweren oder tödlichen Verletzungen führen.
- Eine qualifizierte Person muss das Problem umgehend untersuchen.

WARNUNG:

- Vor Wartungsarbeiten alle Maschinen abstellen
- Wartungsarbeiten am Banner-Gerät oder -System während des Betriebs der gefahrbringen- den Maschinen können schwere oder tödliche Verletzungen zur Folge haben.
- Die Maschinen, mit denen das Banner-Gerät verbunden ist, dürfen niemals während größerer Reparaturs- oder Wartungsarbeiten in Betrieb sein. Hierfür sind möglicherweise Lockout/Tagout-Verfahren (Verriegelung/Kennzeichnung) erforderlich (siehe OSHA1910.147, ANSI Z244-1, ISO 14118 oder die geltende Norm zur Steuerung gefährlicher Energie).

Eine Person, die durch ein anerkanntes Ausbildungs- oder Berufsabschlusszertifikat, bzw. durch umfangreiche Kenntnisse und die entsprechende Ausbildung oder Erfahrung mit Erfolg nachweisen kann, dass sie in der Lage ist, Probleme bezüglich des in Frage stehenden Gegenstands und bei der Arbeit mit diesem zu lösen.
9.2.2 Erweiterte Diagnostik

Zusätzlich zu den Standardfehlercodes kann der EZ-SCREEN erweiterte Diagnosecodes für werkseitige Fehlersuch- und Reparaturfunktionen anzeigen. Diese Codes sind im Allgemeinen nicht für die Fehlerbehebung vor Ort durch den EZ-SCREEN vorgesehen.

Diese erweiterten Codes sind dreistellig (abwechselnd „Axx“/„Bxx“, wobei „xx“ für zwei alphanumerische Zeichen steht), So zeigen Sie diese Codes an:

- Halten Sie den Reset-Eingang eingeschaltet (+24 V DC), oder
- halten Sie die Taste „Anzeige invertieren“ während eines Sperrzustands fünf Sekunden lang gedrückt.

Wenn die erweiterten Diagnosecodes versehentlich angezeigt werden, halten Sie die Taste „Anzeige invertieren“ 5 Sekunden lang gedrückt, um zur Anzeige der Standardfehlercodes zurückzukehren.

9.2.3 Empfänger-Fehlercodes

| Diagnose-
display	Fehlerbeschreibungen und -ursachen	Maßnahme
Ausgangsfehler	Ursache für diesen Fehler:	
- Einer oder beide Ausgänge gegen Stromversorgungsleitung kurzgeschlossen (hohe Spannung oder tiefe Spannung)
- OSSD 1 gegen OSSD 2 kurzgeschlossen
- Überlast (über 0,5 A) | Trennen Sie die OSSD-Lasten und führen Sie einen Reset am Empfänger durch.
- Erlischt die Fehlermeldung, liegt das Problem in den OSSD-Lasten oder in der Lastverdrahtung.
- Liegt die Fehlermeldung ohne angeschlossene Last weiterhin an, muss der Empfänger ausgetauscht werden. |

| Testeingangs-Fehler | Prüfen Sie, ob der Reset-Schalter in der offenen Stellung ist.
Führen Sie einen Reset am Empfänger durch (siehe Reset von Sender und Empfänger auf Seite 77).
- Liegt der Fehler weiterhin an, trennen Sie den Reset-Leiter an Pin 8; schalten Sie die Stromversorgung aus und dann wieder ein.
- Erlischt die Fehlermeldung, liegt das Problem am Reset-Schalter oder in der Verdrahtung.
- Liegt die Fehlermeldung weiterhin an, muss der Empfänger ausgetauscht werden. |

| EDM-Eingangsfehler | Überprüfen Sie, ob die EDM-Verdrahtung für den konfigurierten EDM-Typ korrekt ist (siehe Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41).
- Liegt die Fehlermeldung weiterhin an, unterbrechen Sie die Versorgung zur überwachten Maschine, trennen Sie die OSSD-Lasten, trennen Sie die EDM-Eingangssignale, konfigurieren Sie EDM für „Keine Überwachung“ (siehe Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41) und führen Sie die Überprüfung vor der erstmaligen Inbetriebnahme in Überprüfung vor der erstmaligen Inbetriebnahme auf Seite 33 aus.
- Erlischt die Fehlermeldung, liegt das Problem bei den Kontakten oder Verdrahtungen der externen Geräte, oder es handelt sich um ein Problem mit der Anschraubzeit der externen Geräte. Überprüfen Sie die EDM-Verdrahtung auf Fehler und prüfen Sie, ob die externen Vorrichtungen die in Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41 beschriebenen Anforderungen erfüllen.
- Liegt die Fehlermeldung weiterhin an, müssen die EDM-Eingänge auf übermäßiges Rauschen untersucht werden (siehe Elektrisches und optisches Rauschen auf Seite 81). Liegt die Fehlermeldung weiterhin an, muss der Empfänger ausgetauscht werden. |

| Empfängerfehler | Führen Sie einen Reset am Empfänger durch (siehe Reset von Sender und Empfänger auf Seite 77).
- Erlischt die Fehlermeldung, führen Sie eine tägliche Prüfroutine aus (siehe Prüfroutinen für den EZ-SCREEN; Überprüfung bei Schichtwechsel und tägliche Überprüfung; Karte für die tägliche Überprüfung). Wenn bei der Überprüfung keine Fehler auftreten, kann der Betrieb fortgesetzt werden. Treten Systemfehler auf, muss der Empfänger ausgetauscht werden.
- Erlischt die Fehlermeldung, müssen die externen Anschlüsse und Konfigurationseinstellungen überprüft werden.
- Liegt die Fehlermeldung weiterhin an, muss der Empfänger ausgetauscht werden. |
<table>
<thead>
<tr>
<th>Diagnose-display</th>
<th>Fehlerbeschreibungen und -ursachen</th>
<th>Maßnahme</th>
</tr>
</thead>
</table>
| **DIP-Schalter-Fehler** | Dieser Fehler kann durch falsche DIP-Schaltereinstellungen oder Änderungen der DIP-Schaltereinstellungen bei eingeschaltetem System verursacht werden. | • Prüfen Sie, ob die DIP-Schaltereinstellungen gültig sind. Nehmen Sie alle notwendigen Korrekturen vor und führen Sie einen Reset am Empfänger durch.
• Wenn der Fehler auftritt, weil die DIP-Schaltereinstellungen geändert wurden, während sich das System im RUN-Modus befand, müssen die Schaltereinstellungen überprüft und ein Reset am Empfänger durchgeführt werden, damit der Betrieb mit den neuen Schaltereinstellungen und der geänderten Systemkonfiguration wieder aufgenommen werden kann.
• Legt die Fehlermeldung weiterhin an, muss der Empfänger ausgetauscht werden. |
| **EDM 1-Fehler** | Dieser Fehler kann auftreten, wenn das EDM 1-Eingangssignal nicht innerhalb von 250 ms ab der Statusänderung der OSSDs (EIN oder AUS) anspricht. | Überprüfen Sie die EDM-Verdrahtung auf Fehler und prüfen Sie, ob die externen Vorrichtungen die in Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41 beschriebenen Anforderungen erfüllen.
• Liegt die Fehlermeldung weiter an, unterbrechen Sie die Versorgung zur überwachten Maschine, trennen Sie die OSSD-Lasten, trennen Sie die EDM-Eingangssignale, konfigurieren Sie EDM für „Keine Überwachung“ (siehe Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41) und führen Sie die Überprüfung vor der erstmaligen Inbetriebnahme in Überprüfung vor der erstmaligen Inbetriebnahme auf Seite 33 aus.
• Erlässt die Fehlermeldung, liegt das Problem bei den Kontaktanlagen oder Verdrahtungen der externen Geräte, oder es handelt sich um ein Problem mit der Anprechzeit der externen Geräte. Überprüfen Sie die EDM-Verdrahtung auf Fehler und prüfen Sie, ob die externen Vorrichtungen die in Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41 beschriebenen Anforderungen erfüllen.
• Legt die Fehlermeldung weiter an, müssen die EDM-Eingänge auf übermäßiges Rauschen untersucht werden (siehe Elektrisches und optisches Rauschen auf Seite 81). |
| **EDM2-Fehler** | Die EDM 2-Konfiguration ist nicht gültig. | • Prüfen Sie die EDM-Verdrahtung auf Fehler und prüfen Sie, ob die externen Vorrichtungen die in Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41 beschriebenen Anforderungen erfüllen.
• Liegt die Fehlermeldung weiter an, unterbrechen Sie die Versorgung zur überwachten Maschine, trennen Sie die OSSD-Lasten, trennen Sie die EDM-Eingangssignale, konfigurieren Sie EDM für „Keine Überwachung“ (siehe Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41) und führen Sie die Überprüfung vor der erstmaligen Inbetriebnahme aus (siehe Überprüfung vor der erstmaligen Inbetriebnahme auf Seite 33).
• Erlässt die Fehlermeldung, liegt das Problem bei den Kontaktanlagen oder Verdrahtungen der externen Geräte, oder es handelt sich um ein Problem mit der Anprechzeit der externen Geräte. Überprüfen Sie die EDM-Verdrahtung auf Fehler und prüfen Sie, ob die externen Vorrichtungen die in Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41 beschriebenen Anforderungen erfüllen.
• Erlässt die Fehlermeldung, liegt das Problem bei den Kontaktanlagen oder Verdrahtungen der externen Geräte, oder es handelt sich um ein Problem mit der Anprechzeit der externen Geräte. Überprüfen Sie die EDM-Verdrahtung auf Fehler und prüfen Sie, ob die externen Vorrichtungen die in Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41 beschriebenen Anforderungen erfüllen.
• Erlässt die Fehlermeldung, liegt das Problem bei den Kontaktanlagen oder Verdrahtungen der externen Geräte, oder es handelt sich um ein Problem mit der Anprechzeit der externen Geräte. Überprüfen Sie die EDM-Verdrahtung auf Fehler und prüfen Sie, ob die externen Vorrichtungen die in Primäre Steuerelemente der Maschine und EDM-Eingang auf Seite 41 beschriebenen Anforderungen erfüllen.
• Legt die Fehlermeldung weiter an, müssen die EDM-Eingänge auf übermäßiges Rauschen untersucht werden (siehe Elektrisches und optisches Rauschen auf Seite 81). |
| **Fehler bei fester Ausblendung** | Dieser Fehler tritt auf, wenn die ausgeblendeten Strahlen (die programmiert wurden, ein stationäres Objekt zu ignorieren), frei werden, nachdem das Objekt entfernt oder verschoben wurde. | • Positionieren Sie das Objekt neu und führen Sie einen Schlüssel-Reset durch (oder schalten Sie das System aus und wieder ein).
• Lemen Sie die stationären ausgeblendeten Objekte neu ein, siehe Feste Ausblendung auf Seite 37. |
| **Fehler bei Überschreitung des Zeitlimits bei der Programmierung** | Dieser Fehler tritt auf, wenn im Programmiermodus (Teach-Modus) für feste Ausblendung das zehnminütige Zeitlimit überschritten wird. | Lemen Sie die stationären ausgeblendeten Objekte neu ein, siehe Feste Ausblendung auf Seite 37. |
| **Kaskaden-Konfigurationsfehler** | Dieser Fehler tritt auf, wenn die Konfigurationsspezifikation nicht richtig durchgeführt wird, Empfänger 2, 3 oder 4 konfiguriert werden oder Empfänger 1 an eine andere Position in der Kaskade verschoben wird. | • Der oder die CSSI-Eingangskanäle sind gegeneinander oder gegen eine andere Versorgungsquelle oder gegen Masse kurzgeschlossen.
• Konfigurieren Sie NUR den ersten Empfänger in der Kaskade (der an die Maschinenanschaltstelle angeschlossen ist). Alle anderen Empfänger müssen auf 2-Ch eingestellt sein. EDM (E2) und Schaltausgang (T), siehe Konfigurationseinstellungen für kaskadierte Sensoren auf Seite 69.
• Konfigurieren Sie den ersten Empfänger neu, um das System an Änderungen oder den Austausch anderer Empfänger anzupassen, siehe Konfigurationseinstellungen für kaskadierte Sensoren auf Seite 69.
In einem kaskadierten System sind alle Empfänger miteinander verbunden, und alle Sender sind miteinander verbunden. |
9.2.4 Sender-Fehlercodes

Der Sender hat nur eine einstellige Anzeige. Zweistellige Codes werden nacheinander angezeigt.

<table>
<thead>
<tr>
<th>Diagnose-display</th>
<th>Fehlerbeschreibung</th>
<th>Fehlerursache und Abhilfemaßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senderfehler</td>
<td>Dieser Fehler kann aufgrund übermäßigens elektrischen Rauschens oder einer internen Störung auftreten.</td>
<td>Den Sender gemäß Reset-Verfahren auf Seite 51 zurücksetzen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erlöse die Fehlermeldung, führen Sie eine tägliche Überprüfungsroute (siehe Tägliche Überprüfungsroute/Überprüfung bei Schichtwechsel auf Seite 61). Werden dabei keine Fehler festgestellt, den Betrieb wieder aufnehmen. Bestaht System die tägliche Überprüfung nicht, muss der Empfänger ausgetauscht werden.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erlöse die Fehlermeldung, müssen die Quellen des elektrischen Rauschens ermittelt werden (siehe Elektrisches und optisches Rauschen auf Seite 81).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Liegt die Fehlermeldung weiterhin an, muss der Empfänger ausgetauscht werden.</td>
</tr>
<tr>
<td>Fehler durch starkes Rauschen</td>
<td>Zu diesem Fehler kann es durch übermäßig starkes elektrisches Rauschen kommen.</td>
<td>Den Sender gemäß Reset-Verfahren auf Seite 51 zurücksetzen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erlöse die Fehlermeldung, führen Sie die tägliche Prüfroutine aus (siehe Prüfroutinen für den EZ-SCREEN: Überprüfung bei Schichtwechsel und tägliche Überprüfung; Karte für die tägliche Überprüfung). Wenn bei der Überprüfung keine Fehler auftreten, kann der Betrieb fortgesetzt werden. Treten Fehler auf, muss der Sender ausgetauscht werden.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Liegt die Fehlermeldung weiterhin an, muss der Masseanschluss geprüft werden (siehe Allgemeine Schaltpläne auf Seite 45).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ist der Sensor gut geerdet, prüfen Sie auf elektrisches Rauschen (siehe Elektrisches und optisches Rauschen auf Seite 81).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Liegt die Fehlermeldung weiterhin an, muss der Sender ausgetauscht werden.</td>
</tr>
</tbody>
</table>

9.3 Testmodus für 5-polige Sender

Wenn ein Schalter oder Relaiskontakte geöffnet werden, die mit den TEST1- und TEST2-Anschlüssen des Senders verbunden sind, oder wenn eine Spannung von weniger als 3 V DC ausschließlich an TEST1 gelegt wird, wird für Testzwecke ein blockierter Zustand simuliert.

Um den ordnungsgemäßen Betrieb zu überprüfen, messen Sie die Spannung zwischen TEST1 (Pin 4, schwarz) und DC COM (Pin 3, blau) des Senders:

\[
\text{Spannung: } 3 \text{ V DC}
\]
Wenn die Spannung 10 V DC bis 30 V DC beträgt, sollte sich der Sender im RUN-Modus befinden und eine Strahlabtastung stattfinden. Wenn sich der Sender nicht im RUN-Modus befindet:

- Prüfen Sie den +24 V DC-Kontakt (Pin 1, braun) auf die richtige Eingangsspannung. Wenn die Betriebsspannung nicht innerhalb der Spezifikationen liegt, muss sie korrigiert und dann die Senderfunktion erneut überprüft werden.
- Wenn die richtige Betriebsspannung anliegt, Test1 zwischen 10 V DC und 30 V DC liegt und der Sender immer noch nicht richtig funktioniert (d. h. kein RUN-Modus mit Strahlabtastung), muss er ausgetauscht werden.

Wenn die Spannung weniger als 3 V DC beträgt, sollte sich der Sender im Testmodus befinden und keine Strahlabtastung stattfinden. Befindet sich der Sender nicht im Testmodus, muss er ausgetauscht werden.

9.4 Elektrisches und optisches Rauschen

Der EZ-SCREEN bietet eine hohe Widerstandsfähigkeit gegen Störspannungen und optisches Rauschen und funktioniert verlässlich unter Industriebedingungen. Jedoch kann ein schwerwiegendes elektrisches und/oder optisches Rauschen einen Ausschaltzustand verursachen. In Extremfällen ist eine Sperrung möglich. Um die Folgen einer kurzfristigen Störung zu minimieren, reagiert der EZ-SCREEN nur, wenn Störungen bei mehreren aufeinander folgenden Scan-Vorgängen erfasst werden.

Werden Fehlschaltungen ausgelöst, sollten Sie überprüfen, ob Folgendes vorliegt:
- Mangelhafte Verbindung zwischen Sensor und Erdung
- Optische Störung durch benachbarte Lichtvorhänge oder andere optoelektronische Sensoren
- Zu nah an der Störleitung verlaufende Ein- oder Ausgangsleitungen von Sensoren

9.4.1 Auf Quellen für elektrisches Rauschen überprüfen.

2. Decken Sie die Linse des BT-1 mit Isolierband ab, um zu verhindern, dass Licht in die Empfängerlinse eindringt.
3. Drücken Sie die RCV-Taste am BT-1 und setzen Sie den Beam-Tracker auf die zum EZ-SCREEN führenden Leitungen bzw. auf andere Leitungen in der Nähe.
4. Installieren Sie Überspannungsbegrenzer für die gesamte Last, um Störungen zu vermindern.

9.4.2 Überprüfung von Quellen für optische Störsignale

1. Schalten Sie den Sender aus, blockieren Sie den Sender vollständig oder öffnen Sie den Testeingang.
2. Überprüfen Sie das Licht am Empfänger mit einem BT-1 Beam-Tracker von Banner (siehe Zubehör auf Seite 82).
3. Drücken Sie die Taste „RCV“ am BT-1 und bewegen Sie das Gerät über die gesamte Länge des Erfassungsbereichs des Empfängers. Wenn die LEDs am BT-1 aufleuchten, überprüfen Sie, ob Licht von anderen Quellen ausgestrahlt wird (andere Sicherheits-Lichtvorhänge, Gitter oder Punkte oder optoelektronische Standardsensoren).
10 Zubehör

10.1 Interface-Module

Interface-Module vom Typ IM-T-..A bieten zwangsgeführte, mechanisch verbundene Relais- (Sicherheits-)ausgänge für das EZ-SCREEN System. Für weitere Informationen wird auf das Banner-Datenblatt mit der Ident-Nr. 62822 und die Schaltpläne verwiesen.

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM-T-9A</td>
<td>Interface-Modul, 3 redundante Ausgangs-Schließerkontakte, 6 A</td>
</tr>
<tr>
<td>IM-T-11A</td>
<td>Interface-Modul, 2 redundante Ausgangs-Schließerkontakte, 6 A, plus 1 Hilfs-Öffnerkontakt</td>
</tr>
</tbody>
</table>

10.2 Kontaktgeber

Die Öffnerkontakte werden in einem Schaltkreis für die Überwachung externer Geräte (EDM) verwendet. Soweit verwendet, sind zwei Kontaktgeber je EZ-SCREEN-System erforderlich.

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-BG00-31-D-024</td>
<td>Zwangsgeführter 10-A-Kontaktgeber, 3 Schließer, 1 Öffner</td>
</tr>
<tr>
<td>BF1801L024</td>
<td>Zwangsgeführter 18-A-Kontaktgeber, 3 Schließer, 1 Öffner (Öffnerkontakt mit 10 A Nennleistung.</td>
</tr>
</tbody>
</table>

10.3 Sicherheitskontroller

<table>
<thead>
<tr>
<th>Nicht erweiterbare Ausführungen</th>
<th>Erweiterbare Ausführungen</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC26-2</td>
<td>XS26-2</td>
<td>26 konvertierbare Ein-/Ausgänge und 2 redundante Sicherheits-Transistorausgänge</td>
</tr>
<tr>
<td>SC26-2d</td>
<td>XS26-2d</td>
<td>26 konvertierbare Ein-/Ausgänge und 2 redundante Sicherheits-Transistorausgänge mit Display</td>
</tr>
<tr>
<td>SC26-2e</td>
<td>XS26-2e</td>
<td>26 konvertierbare Ein-/Ausgänge und 2 redundante Sicherheits-Transistorausgänge mit Ethernet</td>
</tr>
<tr>
<td>SC26-2de</td>
<td>XS26-2de</td>
<td>26 konvertierbare Ein-/Ausgänge und 2 redundante Sicherheits-Transistorausgänge mit Display und Ethernet</td>
</tr>
<tr>
<td>SC10-2roe</td>
<td></td>
<td>10 Eingänge, 2 redundante Relais-Sicherheitsausgänge (je 3 Kontakte)</td>
</tr>
</tbody>
</table>

10.4 Muting-Module

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Montage</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMD-TA-11B</td>
<td>Muting-Modul für DIN-Montage</td>
<td>2 Schließer-Sicherheitsausgänge (6 A), 2 oder 4 Muting-Eingänge, SSI, Override-Eingang; IP20; Anschlussklemmen</td>
</tr>
<tr>
<td>MMD-TA-12B</td>
<td></td>
<td>2 OSSD-Ausgänge, 2 oder 4 Muting-Eingänge, SSI, Override-Eingang; IP20; Anschlussklemmen</td>
</tr>
</tbody>
</table>

10.5 AC-Netzteile

Wechselstromversorgung für den Gebrauch mit den Sendern und/oder Empfängern der Bauform EZ-SCREEN. Die Modelle EZAC-R,... können mit bis zu drei Empfängern oder zwei kaskadierten Sender-Empfänger-Paaren verbunden werden. Die Modelle EZAC-E,... können bis zu vier Sender versorgen. Das Netzeil liefert +24 V Gleichstrom bei 0,7 Ampere (16,8 W max. Leistung); nimmt Eingangsspannungen von 100 bis 250 V AC (50 bis 60 Hz) auf; IP65-Metallgehäuse.

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Ausgänge</th>
<th>EDM</th>
<th>Sender- und Empfängeranschluss</th>
<th>Wechselstrom-Versorgungsanschluss</th>
<th>Ausgangs- und EDM-Anschlüsse</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZAC-R9-QE8</td>
<td>3 Schließerkontakte</td>
<td>Einstellbare Optionen: Einkanal-, 2-Kanal- oder keine EDM</td>
<td>Fest verdrahtet</td>
<td>Fest verdrahtet</td>
<td></td>
</tr>
<tr>
<td>EZAC-R11-QE8</td>
<td>2 Schließer, 1 Öffner</td>
<td>8-poliger M12 Euro-Schnellanschluss</td>
<td>3-poliger Miniatur-Schnellanschluss</td>
<td>8-poliger Miniatur-Schnellanschluss</td>
<td></td>
</tr>
<tr>
<td>EZAC-R15A-QE8-QS83</td>
<td>1 Schließer + 1 SPDT (Formular C)</td>
<td>1 Kanal</td>
<td>3-poliger Miniatur-Schnellanschluss</td>
<td>5-poliger Miniatur-Schnellanschluss</td>
<td></td>
</tr>
<tr>
<td>EZAC-R8N-QE8-QS53</td>
<td>1 Schließer, 1 Öffner</td>
<td>Versorgungssicherung</td>
<td>3-poliger Miniatur-Schnellanschluss</td>
<td>5-poliger Miniatur-Schnellanschluss</td>
<td></td>
</tr>
<tr>
<td>EZAC-R10N-QE8-QS53</td>
<td>2 Schließer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gehäuse nur für Sender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typenbezeichnung</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>EZAC-E-QE8</td>
</tr>
<tr>
<td>EZAC-E-QE5</td>
</tr>
<tr>
<td>EZAC-E-QE8-QS3</td>
</tr>
<tr>
<td>EZAC-E-QE5-QS5</td>
</tr>
</tbody>
</table>

10.6 Externer Reset-Schalter

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZA-RR-1</td>
<td>Externer Schließer-Reset-Schalter mit 8-poligem M12/Euro-Schnellanschluss; kann mit den Kabelsatzmodellen QDE-8..D, DEE2R-8..D oder CSB-..M1281 zusammengeschaltet werden.</td>
</tr>
</tbody>
</table>
10.7 Schutzlinsen

<table>
<thead>
<tr>
<th>Modell mit selbstklebender Rückseite</th>
<th>Aufsteckbares Modell</th>
<th>Sensorschutzfeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZS-150</td>
<td>EZSS-150</td>
<td>150 mm (5,9 in)</td>
</tr>
<tr>
<td>EZS-300</td>
<td>EZSS-300</td>
<td>300 mm (11,8 in)</td>
</tr>
<tr>
<td>EZS-450</td>
<td>EZSS-450</td>
<td>450 mm (17,7 in)</td>
</tr>
<tr>
<td>EZS-600</td>
<td>EZSS-600</td>
<td>600 mm (23,6 in)</td>
</tr>
<tr>
<td>EZS-750</td>
<td>EZSS-750</td>
<td>750 mm (29,5 in)</td>
</tr>
<tr>
<td>EZS-900</td>
<td>EZSS-900</td>
<td>900 mm (35,4 in)</td>
</tr>
<tr>
<td>EZS-1050</td>
<td>EZSS-1050</td>
<td>1050 mm (41,3 in)</td>
</tr>
<tr>
<td>EZS-1200</td>
<td>EZSS-1200</td>
<td>1200 mm (47,2 in)</td>
</tr>
<tr>
<td>EZS-1350</td>
<td>EZSS-1350</td>
<td>1350 mm (53,1 in)</td>
</tr>
<tr>
<td>EZS-1500</td>
<td>EZSS-1500</td>
<td>1500 mm (59,1 in)</td>
</tr>
<tr>
<td>EZS-1650</td>
<td>EZSS-1650</td>
<td>1650 mm (65,0 in)</td>
</tr>
<tr>
<td>EZS-1800</td>
<td>EZSS-1800</td>
<td>1800 mm (70,9 in)</td>
</tr>
</tbody>
</table>

Die Gesamt-Erfassungsreichweite nimmt um ca. 10 % pro Schutzlinse ab.

10.8 Röhrenförmige Gehäuse

Bei Verwendung eines röhrenförmigen Gehäuses mit einem Ständer der Bauform MSA (Datenblatt Ident-Nr. 117107) ist der Adapterwinkel EZA-MBK-2 erforderlich. Explosionsgeschützte Gehäuse sind ebenfalls erhältlich.

<table>
<thead>
<tr>
<th>Gehäusemodell</th>
<th>Gehäusehöhe</th>
<th>Für EZ-SCREEN-Modelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZA-TE-150</td>
<td>439 mm (17,3 in)</td>
<td>SLS..-150</td>
</tr>
<tr>
<td>EZA-TE-300</td>
<td>541 mm (21,3 in)</td>
<td>SLS..-300</td>
</tr>
<tr>
<td>EZA-TE-450</td>
<td>744 mm (29,3 in)</td>
<td>SLS..-450</td>
</tr>
<tr>
<td>EZA-TE-600</td>
<td>846 mm (33,3 in)</td>
<td>SLS..-600</td>
</tr>
<tr>
<td>EZA-TE-750</td>
<td>1024 mm (40,3 in)</td>
<td>SLS..-750</td>
</tr>
<tr>
<td>EZA-TE-900</td>
<td>1151 mm (45,3 in)</td>
<td>SLS..-900</td>
</tr>
<tr>
<td>EZA-TE-1050</td>
<td>1354 mm (53,3 in)</td>
<td>SLS..-1050</td>
</tr>
<tr>
<td>EZA-TE-1200</td>
<td>1455 mm (57,3 in)</td>
<td>SLS..-1200</td>
</tr>
<tr>
<td>EZA-TE-1350</td>
<td>1608 mm (63,3 in)</td>
<td>SLS..-1350</td>
</tr>
<tr>
<td>EZA-TE-1500</td>
<td>1760 mm (69,3 in)</td>
<td>SLS..-1500</td>
</tr>
<tr>
<td>EZA-TE-1650</td>
<td>1913 mm (75,3 in)</td>
<td>SLS..-1650</td>
</tr>
<tr>
<td>EZA-TE-1800</td>
<td>2065 mm (81,3 in)</td>
<td>SLS..-1800</td>
</tr>
</tbody>
</table>

21 Polycarbonat-Schutz gegen Schweißspritzer und Schweißgrat mit einer selbstklebenden Neoprendichtung (siehe Datenblatt mit der Ident-Nr. 61960).
22 Der Copolyester-Schutz bietet einen hochbelastbaren, stoßfesten Schutz gegen viele Arten von Schneidflüssigkeiten (siehe Datenblatt mit der Ident-Nr. 127944).
23 Auskünfte zur Verfügbarkeit von Schutzlinsen für größere Sensorlängen erhalten Sie bei Banner Engineering.
24 Auskünfte über die Verfügbarkeit von Gehäusen für längere Sensoren erhalten Sie bei Banner Engineering.
10.9 Montagegeständer der MSA-Bauform

- Enthält T-Schlitze für die Montage mit 20 mm Abstand zwischen den Schlitzten.
- Sockel enthalten. Durch Hinzufügen der Endung „NB“ an die Typenbezeichnung ohne Montagesockel erhältlich, z. B. MSA-S42-1NB).

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Stangenhöhe</th>
<th>Nutzbare Höhe des Montageständers</th>
<th>Gesamthöhe des Montageständers</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSA-S24-1</td>
<td>610 mm (24 in)</td>
<td>483 mm (19 in)</td>
<td>616 mm (24,25 in)</td>
</tr>
<tr>
<td>MSA-S42-1</td>
<td>1067 mm (42 in)</td>
<td>940 mm (37 in)</td>
<td>1073 mm (42,25 in)</td>
</tr>
<tr>
<td>MSA-S66-1</td>
<td>1676 mm (66 in)</td>
<td>1550 mm (61 in)</td>
<td>1682 mm (66,25 in)</td>
</tr>
<tr>
<td>MSA-S84-1</td>
<td>2134 mm (84 in)</td>
<td>2007 mm (79 in)</td>
<td>2140 mm (84,25 in)</td>
</tr>
<tr>
<td>MSA-S105-1</td>
<td>2667 mm (105 in)</td>
<td>2667 mm (100 in)</td>
<td>2673 mm (105,25 in)</td>
</tr>
</tbody>
</table>

10.10 Umlenkspiegel der MSM-Bauform

- Kompakte Bauform für Anwendungen mit geringer Beanspruchung
- Winkel können seitverkehrt zu den oben gezeigten Positionen verwendet werden, (Flansche zeigen „einwärts“ statt „auswärts“, siehe Abbildung). In diesem Fall vermindert sich Abmessung L1 um 57 mm.
- MSAMB Adapterwinkelkit bei jedem MSA-Montageständer enthalten.

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Schutzfeld-Länge</th>
<th>Reflexionsbereich Y</th>
<th>Montage L1</th>
<th>Montage L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSM8A</td>
<td>150 mm (5,9 Zoll)</td>
<td>267 mm (10,5 Zoll)</td>
<td>323 mm (12,7 Zoll)</td>
<td>292 mm (11,5 Zoll)</td>
</tr>
<tr>
<td>MSM12A</td>
<td>300 mm (11,8 Zoll)</td>
<td>356 mm (14 Zoll)</td>
<td>411 mm (16,2 Zoll)</td>
<td>381 mm (15 Zoll)</td>
</tr>
<tr>
<td>MSM20A</td>
<td>450 mm (17,7 Zoll)</td>
<td>559 mm (22 Zoll)</td>
<td>615 mm (24,2 Zoll)</td>
<td>584 mm (23 Zoll)</td>
</tr>
<tr>
<td>MSM24A</td>
<td>600 mm (23,6 Zoll)</td>
<td>660 mm (26 Zoll)</td>
<td>716 mm (28,2 Zoll)</td>
<td>686 mm (27 Zoll)</td>
</tr>
<tr>
<td>MSM32A</td>
<td>750 mm (29,5 Zoll)</td>
<td>864 mm (34 Zoll)</td>
<td>919 mm (36,2 Zoll)</td>
<td>889 mm (35 Zoll)</td>
</tr>
<tr>
<td>MSM36A</td>
<td>900 mm (35,4 Zoll)</td>
<td>965 mm (38 Zoll)</td>
<td>1021 mm (40,2 Zoll)</td>
<td>991 mm (39 Zoll)</td>
</tr>
<tr>
<td>MSM44A</td>
<td>1050 mm (41,3 Zoll)</td>
<td>1168 mm (46 Zoll)</td>
<td>1224 mm (48,2 Zoll)</td>
<td>1194 mm (47 Zoll)</td>
</tr>
<tr>
<td>MSM48A</td>
<td>1200 mm (47,2 Zoll)</td>
<td>1270 mm (50 Zoll)</td>
<td>1326 mm (52,2 Zoll)</td>
<td>1295 mm (51 Zoll)</td>
</tr>
</tbody>
</table>

10.11 Umlenkspiegel der SSM-Bauform

- Robust für anspruchsvollste Anwendungen
- Besonders breit für den Gebrauch mit optischen Sicherheitssystemen mit hoher Reichweite
- Rückflächen-Glasspiegel haben einen Wirkungsgrad von 85 %. Die Gesamterfassungsreichweite nimmt um ca. 8 % pro Spiegel ab. Weitere Informationen finden Sie im Datenblatt zum Spiegel mit der Ident-Nr. 61934 oder auf www.bannerengineering.com.
• Ausführungen mit reflektierender Edelstahloberfläche ebenfalls erhältlich. Siehe Datenblatt (Ident-Nr. 67200).
• Robuste Konstruktion, zwei Montagewinkel und Befestigungskleinteile im Lieferumfang enthalten.
• Für Ständer der Bauform MSA ist Adapterbügel EZA-MBK-2 erforderlich, siehe in der Liste mit Zubehör für Montagewinkel.
• Winkel können seitenverkehrt zu den oben gezeigten Positionen sein, wobei Abmessung L1 um 58 mm (2,3 Zoll) verringert wird.

<table>
<thead>
<tr>
<th>Spiegelausführungen</th>
<th>Schutzfeld-Länge</th>
<th>Reflexionsbereich Y</th>
<th>Montage 1</th>
<th>Montage L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM-200</td>
<td>150 mm (5,9 Zoll)</td>
<td>200 mm (7,9 Zoll)</td>
<td>278 mm (10,9 Zoll)</td>
<td>311 mm (12,2 Zoll)</td>
</tr>
<tr>
<td>SSM-375</td>
<td>300 mm (11,8 Zoll)</td>
<td>375 mm (14,8 Zoll)</td>
<td>486 mm (19,1 Zoll)</td>
<td>453 mm (17,8 Zoll)</td>
</tr>
<tr>
<td>SSM-650</td>
<td>450 mm (17,7 Zoll)</td>
<td>550 mm (21,7 Zoll)</td>
<td>661 mm (26,0 Zoll)</td>
<td>628 mm (24,7 Zoll)</td>
</tr>
<tr>
<td>SSM-875</td>
<td>600 mm (23,6 Zoll)</td>
<td>675 mm (26,6 Zoll)</td>
<td>786 mm (31,0 Zoll)</td>
<td>753 mm (29,6 Zoll)</td>
</tr>
<tr>
<td>SSM-825</td>
<td>750 mm (29,5 Zoll)</td>
<td>825 mm (32,5 Zoll)</td>
<td>936 mm (36,9 Zoll)</td>
<td>903 mm (35,6 Zoll)</td>
</tr>
<tr>
<td>SSM-975</td>
<td>900 mm (35,4 Zoll)</td>
<td>975 mm (38,4 Zoll)</td>
<td>1086 mm (42,8 Zoll)</td>
<td>1053 mm (41,5 Zoll)</td>
</tr>
<tr>
<td>SSM-1100</td>
<td>1050 mm (41,3 Zoll)</td>
<td>1100 mm (43,3 Zoll)</td>
<td>1211 mm (47,7 Zoll)</td>
<td>1178 mm (46,4 Zoll)</td>
</tr>
<tr>
<td>SSM-1275</td>
<td>1200 mm (47,2 Zoll)</td>
<td>1275 mm (50,2 Zoll)</td>
<td>1386 mm (54,6 Zoll)</td>
<td>1353 mm (53,3 Zoll)</td>
</tr>
<tr>
<td>SSM-1400</td>
<td>1350 mm (53,1 Zoll)</td>
<td>1400 mm (55,1 Zoll)</td>
<td>1511 mm (59,5 Zoll)</td>
<td>1478 mm (58,2 Zoll)</td>
</tr>
<tr>
<td>SSM-1550</td>
<td>1500 mm (59,0 Zoll)</td>
<td>1550 mm (61,0 Zoll)</td>
<td>1661 mm (65,4 Zoll)</td>
<td>1628 mm (64,1 Zoll)</td>
</tr>
<tr>
<td>SSM-1750</td>
<td>1650 mm (65,0 Zoll)</td>
<td>1750 mm (68,9 Zoll)</td>
<td>1861 mm (73,3 Zoll)</td>
<td>1828 mm (72,0 Zoll)</td>
</tr>
<tr>
<td>SSM-1900</td>
<td>1800 mm (70,9 Zoll)</td>
<td>1900 mm (74,8 Zoll)</td>
<td>2011 mm (79,2 Zoll)</td>
<td>1978 mm (77,9 Zoll)</td>
</tr>
</tbody>
</table>

10.12 Montagewinkel

Zu Standardwinkeln siehe Ersatzteile auf Seite 89. Wenden Sie sich für weitere Informationen an Banner Engineering. Bestellen Sie je einen EZA-MBK-..-Montagewinkel pro Sensor, zwei für jedes Sensorpaar.

EZA-MBK-2
- Adapterwinkel zur Montage von Spiegeln der Bauform SSM auf Ständer der Bauform MSA

Lochmittenabstand: A = 63,9, B = 19,9, A zu B = 22,0
Lochgröße: A = ø 8,3, B = ø 4,8

EZA-MBK-15
- Nachrüstung für STI MS46/47, Keyence PJ-V, SUNX SF4-AH

Lochmittenabstand: A =
Lochgröße: Ø

EZA-MBK-8
- Nachrüstung für Sick FGS- und Leuze L-Montagewinkel

EZA-MBK-18
- Nachrüstung für Dolan-Jenner SS7

Lochmittenabstand: A =
Lochgröße: Ø

10.14 EZ-LIGHT® für EZ-SCREEN®

Bietet eine klare 360°-Anzeige des Empfängerausgangsstatus für den EZ-SCREEN. Mit einem Verteilerkabel vom Typ CSB und optionalen beidseitig vorkonfektionierten Kabeln vom Typ DEE2R verwenden. Für weitere Informationen fordern Sie bitte das Datenblatt mit der Ident-Nr. 121901 an.
<table>
<thead>
<tr>
<th>Modelle</th>
<th>Bauart</th>
<th>Verbinder/LED-Funktion/Eingänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>M18RGX8PQ8</td>
<td>Vernickeltes Messinggehäuse, M18x1-Gewinde; Thermoplast-Linse</td>
<td>Vollvergossen IP67</td>
</tr>
<tr>
<td>T18RGX8PQ8</td>
<td>Thermoplast-Polyester-Gehäuse, Thermoplast-Linse</td>
<td>8-poliger integrierter Euro-Schnellanschluss</td>
</tr>
<tr>
<td>T30RGX8PQ8</td>
<td>Vollvergossen IP67</td>
<td>Rot/ grüne Anzeige folgt dem OSSD-Ausgang des EZ-SCREEN-Empfängers</td>
</tr>
<tr>
<td>K30LRGX8PQ8</td>
<td>Gehäuse aus Polycarbonat, 30-mm-Thermoplastkuppel, 22-mm-Sockelmontage</td>
<td>Rot leuchtend: Strahl für „Betriebsspannung EIN“ unterbrochen oder Sperrzu-stand</td>
</tr>
<tr>
<td></td>
<td>Vollvergossen, Schutzart IP67</td>
<td>Grün leuchtend: Strahl für „Betriebsspannung EIN“ frei</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PNP (Strom liefernd)</td>
</tr>
<tr>
<td>K50LRGX8PQ8</td>
<td>Gehäuse aus Polycarbonat, 50-mm-Thermoplastkuppel, 30-mm-Sockelmontage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vollvergossen, Schutzart IP67</td>
<td></td>
</tr>
<tr>
<td>K80LRGX8PQ8</td>
<td>Gehäuse aus Polycarbonat, 50-mm-Thermoplastkuppel, flache Montage oder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIN-Montage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vollvergossene Elektronik, Schutzart IP67</td>
<td></td>
</tr>
</tbody>
</table>

26 Erhältlich in einem Kit mit einem M18 EZ-LIGHT, einem Montagewinkel SMB18A sowie Befestigungszubehör zur Montage am seitlichen Kanal eines EZ-SCREEN-Gehäuses (Typenbezeichnung für das Kit: EZA-M18RGX8PQ8).
11 Kundendienst und Wartung

11.1 Ersatzteile

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA-KSO-1</td>
<td>Auf dem Bedienfeld montierter Reset-Schlüsselschalter</td>
</tr>
<tr>
<td>MGA-K-1</td>
<td>Ersatzschlüssel für Schalter MGA-KSO-1</td>
</tr>
<tr>
<td>EZA-ADR-1</td>
<td>Abdeckung mit Aufkleber – Empfänger</td>
</tr>
<tr>
<td>EZA-ADR-2</td>
<td>Abdeckung mit invertiertem Etikett – Empfänger</td>
</tr>
<tr>
<td>EZA-TP-1</td>
<td>Schutzabdeckung (mit 2 Schrauben, Schraubenschlüssel)</td>
</tr>
<tr>
<td>EZA-HK-1</td>
<td>Schraubenschlüssel, Schutzabdeckung</td>
</tr>
<tr>
<td>STP-13</td>
<td>14-mm-Testobjekt (Systeme mit 14 mm Auflösung)</td>
</tr>
<tr>
<td>STP-14</td>
<td>30-mm-Testobjekt (Systeme mit 30 mm Auflösung)</td>
</tr>
<tr>
<td>STP-15</td>
<td>60-mm-Testobjekt (Systeme mit 30 mm Auflösung mit reduzierter Zweistrahlen-Auflösung)</td>
</tr>
<tr>
<td>EZA-RTP-1</td>
<td>Abschlusstecker für kaskadierten Empfänger</td>
</tr>
<tr>
<td>EZA-ECC-10</td>
<td>Staubkappe für kaskadierten Sender</td>
</tr>
<tr>
<td>EZA-MBK-11</td>
<td>Schwarz Standard-Montagewinkelsatz mit Zubehör. Enthält 2 Endwinkel und Zubehör für die Montage an Ständern der Bauform MSA.</td>
</tr>
<tr>
<td>EZA-MBK-11N</td>
<td>Edelstahl</td>
</tr>
<tr>
<td>EZA-MBK-12</td>
<td>Schwarz Mittlerer Zentrierzinkelsatz mit Zubehör zur Montage an Ständern der Bauform MSA, sowie Nachrüstung für SICK und Leuze Swivel.</td>
</tr>
<tr>
<td>EZA-MBK-12N</td>
<td>Edelstahl</td>
</tr>
</tbody>
</table>

11.2 Reinigung

11.3 Garantieservice

11.4 Fabrikationsdatum

- YY = Herstellungsjahr, 2-stellig
- WW = Herstellungskalenderwoche, 2-stellig
- L = Banner-spezifischer Code, 1-stellig

11.5 Entsorgung

Altgeräte müssen gemäß den örtlich geltenden Vorschriften entsorgt werden.

11.6 Kontakt

Sitz der Zentrale von Banner Engineering Corporate:

9714 Tenth Avenue North
Minneapolis, MN 55441, USA
Website: www.bannerengineering.com
Telefon: +1 888 373 6767

11.7 Beschränkte Garantie von Banner Engineering Corp.

Diese beschränkte Garantie ist ausschließlich und ersetzt sämtliche anderen ausdrücklichen und stillschweigenden Garantien (insbesondere Garantien über die Markttauglichkeit oder die Eignung für einen bestimmten Zweck), wobei nicht massgeblich ist, ob diese im Zuge des Kaufabschlusses, der Verhandlungen oder des Handels ausgesprochen wurden.

Informationen zu Patenten finden Sie unter www.bannerengineering.com/patents.
12 Glossar

A

American National Standards Institute (ANSI):

Automatische Netzeinschaltung

B

Ausblendung

Bremse
Ein Mechanismus zum Anhalten oder Verhindern von Bewegung.

Blockierter Zustand
Ein Zustand, bei dem ein lichtundurchlässiges Objekt ausreichender Größe einen oder mehrere Strahlen des Lichtvorhangs blockiert/unterbricht. Bei einem blockierten Zustand gehen die Ausgänge OSSD1 und OSSD2 gleichzeitig innerhalb der Systemansprechzeit aus.

C

Kaskade
Reihenschaltung (bzw. Verkettung) mehrerer Sender und Empfänger.

CE
Abkürzung für „Conformité Européenne“ (Französisch für „Europa-Konformität“). Das CE-Kennzeichen auf einem Produkt oder einer Maschine bedeutet, dass alle einschlägigen Bestimmungen und Sicherheitsnormen der Europäischen Union (EU) erfüllt werden.

Kupplung
Ein Mechanismus, der bei Betätigung ein Drehmoment von einem antreibenden Element auf ein angetriebenes Element überträgt.

Steuerungszuverlässigkeit
Eine Methode, um die Betriebsintegrität eines Steuersystems oder -geräts sicherzustellen. Die Steuerkreise sind so ausgelegt und aufgebaut, dass ein einziger Ausfall oder Fehler im System nicht dazu führen kann, dass kein Stoppsignal zur überwachten Maschine gesendet wird oder dass ein Maschinenzyklus unbeabsichtigt ausgelöst wird. Das Prinzip der Kontrollzuverlässigkeit verhindert, dass eine fortlaufende Maschinenbewegung ausgelöst wird, bevor der Fehler behoben ist.

CSA

D

Schutzfeld

Autorisierte Person
Eine Person, die aufgrund einer angemessenen Schulung und Eignung schriftlich vom Arbeitgeber für die Durchführung einer spezifischen Prüfroutine ermächtigt und somit autorisiert worden ist.
E

Sender

Das Licht aussendende Bauteil eines Sicherheits-Lichtvorhangsystems besteht aus einer Reihe von synchronisierten LEDs, die mit moduliertem Infrarot-Licht arbeiten. Der Sender und der Empfänger, der gegenüber dem Sender installiert wird, erzeugen zusammen einen „Vorhang aus Licht“, der als Schutzfeld bezeichnet wird.

Externe Geräteüberwachung (EDM)

F

Gefährlicher Ausfall

Ein Ausfall, der verzögert oder verhindert, dass das Sicherheitssystem einer Maschine eine gefährliche Maschinenbewegung anhält, sodass das Personal einem höheren Risiko ausgesetzt ist.

Endschaltgerät (FSD)

Die Komponente des Sicherheitsteuersystems der Maschine, die den Stromkreis zum primären Steuerelement der Maschine (MPSE) unterbricht, wenn das Ausgangssignal-Schaltgerät (Output Signal Switching Device/OSSD) in den Aus-Zustand geht.

Feste Ausblendung

Flexible Ausblendung

Siehe unter Reduzierte Auflösung.

FMEA (Failure Mode and Effects Analysis, Ausfallauswirkungsanalyse)

G

Überwachte Maschine

Die Maschine, deren Bedienort durch das Sicherheitssystem überwacht wird.

H

Feste Schutzeinrichtung

Personenschaden

Physische Verletzung oder Gesundheitsschaden bei Personen infolge der direkten Interaktion mit der Maschine oder auf indirektem Weg infolge Sach- oder Umweltschäden.

Gefahrstelle

Die nächste erreichbare Stelle des Gefahrenbereichs.

Gefahrenbereich

Ein Bereich, der eine unmittelbare oder drohende physische Gefahr darstellt.
Interne Sperre

Ein Sperrzustand, der durch ein internes Problem des Sicherheitssystems ausgelöst wird, was im Allgemeinen durch das alleinige Blinken der roten Status-LED angezeigt wird. Ein interner Sperrzustand bedarf der Behebung durch eine qualifizierte Person.

Schlüssel-Reset (Manueller Reset)

Manueller Anlauf-/Wiederanlaufzustand (Verriegelungszustand)

Primäres Steuerelement der Maschine (MPSE)

Ein elektrisch betriebenes Element der überwachten Maschine (nicht des Sicherheitssystems), das den normalen Maschinenbetrieb (die Maschinenbewegung) direkt steuert. Das primäre Steuerelement reagiert zeitlich gesehen zuletzt, wenn eine Maschinenbewegung initiiert oder gesperrt wird.

Ansprechzeit der Maschine

Die Zeit zwischen der Aktivierung einer Maschinennachrichtung und der Herstellung eines sicheren Zustands durch das Anhalten der gefährlichen Maschinenbewegung.

Sperzustand

Ein Zustand eines Sicherheits-Lichtvorhangs, der als Reaktion auf bestimmte Störungssignale automatisch eintritt (eine interne Sperrung). Wenn ein Sperrzustand erfolgt, werden die Sicherheitsausgänge des Sicherheits-Lichtvorhangs ausgeschaltet; der Fehler muss behoben werden und ein manueller Reset ist erforderlich, um das System in den RUN-Modus zurückzuschalten.

Mindest-Objektempfindlichkeit (MOS)

Muting

Die automatische Aussetzung der Schutzfunktion einer Sicherheitsvorrichtung während eines ungefährlichen Teils des Maschinenzyklus.

AUS-Zustand

Der Zustand, bei dem die Ausgangsschaltung unterbrochen ist und keinen Stromfluss zulässt.

Ein-Zustand

Der Zustand, bei dem der Ausgangsschaltkreis geschlossen ist und Stromfluss zulässt.

OSHA (Occupational Safety and Health Administration)

Eine Bundesbehörde im US-Arbeitsministerium der USA, die für die Regulierung der betrieblichen Sicherheit zuständig ist.

OSSD

Ausgangssignal-Schaltgerät. Die Sicherheitsausgänge, die zur Initiierung eines Stoppsignals verwendet werden.
Kupplungsbetätigte Maschinen mit Teilumdrehung

Hintertretungsgefahr

Gefahren durch Hintertreten des Vorhangs entstehen bei Anwendungen, bei denen Personen durch eine Schutzeinrichtung (die einen Stoppbefehl ausgibt, um die Gefahr zu beseitigen) treten und dann weiter in den überwachten Bereich eindringen können, z. B. im Rahmen einer Bereichssicherung. Ihre Anwesenheit wird daraufhin nicht mehr erfasst, und es kommt zu einer Gefahr durch unerwarteten Anlauf bzw. Wiederanlauf der Maschine, während sich noch Personen im überwachten Bereich aufhalten.

Bedienort der Maschine

Der Bereich einer Maschine, an dem sich Material oder ein Werkstück zur Bearbeitung durch die Maschine befindet.

Automatische Maschinenbetätigung bzw. PSDI (Presence-Sensing-Device-Initiation)

Qualifizierte Person

Eine Person, die durch ein anerkanntes Ausbildungs- oder Berufsabschlusszertifikat, bzw. durch umfangreiche Kenntnisse und die entsprechende Ausbildung oder Erfahrung mit Erfolg nachweisen kann, dass sie in der Lage ist, Probleme bezüglich des in Frage stehenden Gegenstands und bei der Arbeit mit diesem zu lösen.
Empfänger

Reduzierte Auflösung
Eine Funktion, durch die ein Sicherheits-Lichtvorhang-System so konfiguriert werden kann, dass es Lichtstrahlen innerhalb des Lichtvorhangs deaktivieren kann, wodurch die Mindest-Objektempfindlichkeit erhöht wird. Die deaktivierten Strahlen bewegen sich auf und ab, damit ein Objekt an einer beliebigen Stelle durch den definierten Bereich geschoben werden kann, ohne dass die Sicherheitssäusgänge (z. B. OSSDs) ausgelöst werden und ein automatischer Anlauf-/Wiederanlauf-(Schalt-)zustand oder ein manueller Anlauf-/Wiederanlaufzustand (Verriegelungszustand) verursacht wird. Gelegentlich auch als „flexible Ausblendung“ bezeichnet.

Selbstüberwachung (sschaltung)
Ein Schaltkreis mit der Fähigkeit, die eigenen sicherheitsrelevanten Schaltkreiskomponenten und die dazugehörigen redundanten Sicherheitskomponenten auf ordnungsgemäße Funktion zu überprüfen. Die Sicherheits-Lichtvorhangsysteme und Sicherheitsmodule von Banner sind selbstüberwachend.

Mindestsicherheitsabstand
Der erforderliche Mindestabstand, damit eine gefährliche Maschinenbewegung vollständig zum Stillstand kommen kann, bevor eine Hand (oder ein anderer Gegenstand) die nächste Gefahrstelle erreichen kann. Der Sicherheitsabstand wird vom Mittelpunkt des Schutzfelds bis zur nächsten Gefahrstelle gemessen. Der Mindest-Sicherheitsabstand wird durch verschiedene Faktoren beeinflusst, z. B. die Maschinenstoppzeit, die Ansprechzeit des Lichtvorhangsystems und das Detektionsvermögen des Lichtvorhangs.

Spezifiziertes Testobjekt
Ein lichtundurchlässiges Objekt ausreichender Größe, das zur Blockierung eines Lichtstrahls verwendet wird, um die Funktion eines Sicherheits-Lichtvorhangsystems zu testen. Wenn das Testobjekt in das Schutzfeld eingeführt und vor den Strahl platziert wird, verursacht das Testobjekt die Deaktivierung der Ausgänge.

Zusätzliche Schutzeinrichtungen
Zusätzliche Schutzeinrichtungen oder feste Schutzeinrichtungen, die verhindern sollen, dass eine Person über, unter, durch oder um die primäre Schutzeinrichtung herum greifen oder auf andere Weise die überwachte Gefahrstelle erreichen kann.

Testobjekt
Ein lichtundurchlässiges Objekt ausreichender Größe, das zur Blockierung eines Lichtstrahls verwendet wird, um die Funktion eines Sicherheits-Lichtvorhangsystems zu testen.

Automatischer Anlauf-/Wiederanlauf- (Schalt)zustand
Die Sicherheitsausgänge des Sicherheits-Lichtvorhangsystems schalten sich aus, wenn ein Objekt einen Strahl vollständig blockiert. In einem automatischen Anlauf-/Wiederanlaufzustand werden die Sicherheitsausgänge wieder aktiviert, wenn das Objekt aus dem Schutzfeld entfernt wird.
UL (Underwriters Laboratory)
Eine unabhängige Organisation, die Produkte daraufhin prüft, ob sie geltende Normen, Vorschriften für elektrische Anlagen und Sicherheitsbestimmungen erfüllen. Die Erfüllung der Bestimmungen wird durch die UL-Markierung auf dem Produkt angezeigt.
Index

A
Anwendungen geeignet 9
Anzeige
Senderversorgung/-fehler 53
Ausgangssignal-Schaltgerät (OSSD) 8

D
DIP-Schalter 7

E
Endschaltgerät (FSD) 8
Erstmaliger Hochlauf 33
Externe Geräteüberwachung (EDM) 7

G
geeignete Anwendungen 9

P
Primäre Steuerelemente der Maschine (MPSEs) 8

S
Schalt- oder Verriegelungsausgang 7
Schalt-/Verriegelungsausgang 51
Sender
Versorgungs-/Fehleranzeige 53