

LM Series Demo Kit

Demo Kit (DK-LM150 Series) Components

	Models	Description
1	LM150KIQP	Precision laser sensor
2	SMBLML1	Mounting bracket
3	RSD1QP	Remote Sensor Display
4	Sensor Base	Multi-segment target and sensor mount
5	RSD Base	DIN rail mount for RSD

Benefits

This demo will show the Analog and Discrete Window Teach functions of the LM Series, as well as RSD recipe control.

- Superior precision for real-world applications
 - Resolution 0.004mm
- Best in class Thermal & Mechanical stability
 - Temperature Effect +/- 0.008 mm/deg C
- Small housing design for the tightest spaces
 - 35.8 mm x 48.5 mm x 23.5 mm
- High response Speed for fast moving targets
 - As fast as 0.5 ms
- Simplified set up, control and replacement with optional Remote Sensor Display(RSD1)

RSD1 Buttons

Use the RSD1 buttons Down, Up, Enter, and Escape to view or change RSD1 settings and information and to program a connected sensor.

Down and Up Buttons

Press Down and Up to:

- Access the Quick Menu from Run mode
- Navigate the menu systems
- Change programming settings
- Change individual digit values in distance-based settings

Enter Button

Press Enter to:

- Access the Sensor Menu from Run modeAccess the submenus
- Move right one digit in distance based settings
- Save changes

Ouvo o

Escape Button

Press and hold Escape for 4 seconds to:

- Press Escape to:
- Leave the current menu and return to the parent menu

- 1. Connect RSD to LM Sensor
- 2. Connect RSD to Power
- 3. Follow Demo Instructions

Two-Point Teach (Analog)

1. Click 🗸 to access the Menu	3. Click 🗸 to start a two-point teach
57.10mm 4.0 mA	SA_OUT ■○ Tch2Pt.~ ■ ♥ (▲) ♥) ♥)
2. Click 🗸 to access the Analog Menu	4. Position the Target Wheel so the LM150 laser is hitting the thinnest section

6. Position the Target Wheel so the LM150 laser is hitting the thickest section

7. Click \bigvee to locate the 20 mA teach option

8. Click \checkmark to teach the 20 mA distance

9. Click ڬ x 3 to return to Run Mode

10. Show the mA output change as you rotate the wheel

Window Teach (Discrete)

4. Click V to locate TchMid

6. Click \checkmark to enter Window Size Menu

- 7. Click \bigvee to set the window to 0.1 mm
- moves cursor to the right increase and decrease the number you have selected

8. Click V to locate TchMdPt

9. Position the Target Wheel to the middle segment

Recipe Control

10. Click \checkmark to perform a mid-point teach

11. Click ڬ x 3 to return to Run mode

12. Show the discrete output only turns on for the middle segment as you rotate the wheel

- 5. Reset LM to Factory Default
- 6. Rotate wheel and show discrete output no longer turns on only for middle segment
- 7. Repeat steps 1 and 2
- 8. Click \checkmark to Export your configuration from the RSD to the LM

9. Click 🔨 to locate yes (No is the default)

	SExport
В	

- 10. Click V to Export Config
- 11. Click **D** twice to return to run mode
- 12. Show how discrete output turns on only for middle segment