Quick Start Guide

Laser distance sensor with dual discrete (switched) outputs and IO-Link.

This guide is designed to help you set up and install the LTF Time of Flight Laser Distance Sensor. For complete information on programming, performance, troubleshooting, dimensions, and accessories, please refer to the Instruction Manual at www.bannerengineering.com. Search for p/n 195393 to view the manual. Use of this document assumes familiarity with pertinent industry standards and practices.

WARNING: Not To Be Used for Personnel Protection

Never use this device as a sensing device for personnel protection. Doing so could lead to serious injury or death. This device does not include the self-checking redundant circuitry necessary to allow its use in personnel safety applications. A sensor failure or malfunction can cause either an energized or de-energized sensor output condition.

Features and Indicators

Three LED indicators provide ongoing indication of the sensing status.

Power LED Indicator
- Solid Green = Normal operation, power On and laser On
- Flashing Green (1 Hz) = Power On and laser Off (laser enable mode)

Discrete Output LED Indicators
- Solid Amber = Discrete Output is On
- Off = Discrete Output is Off

Display

The display is a 2-line, 8-character LCD. The main screen is the Run mode screen, which shows the real-time distance measurement.

Buttons

Use the sensor buttons Down, Up, Enter, and Escape to program the sensor and to access sensor information.

Down and Up Buttons

Press Down and Up to:
- Access the Quick Menu from Run mode
- Navigate the menu systems
- Change programming settings
- Change individual digit values in distance based settings

When navigating the menu systems, the menu items loop.
Enter Button

Press Enter to:
- Access the Sensor Menu from Run mode
- Access the submenus
- Move right one digit in distance based settings
- Save changes

In the Sensor Menu, a check mark \(\checkmark \) in the lower right corner of the display indicates that pressing Enter accesses a submenu.

Press Enter to save changes. New values flash rapidly and the sensor returns to the parent menu.

Escape Button

Press Escape to:
- Leave the current menu and return to the parent menu
- Return to Run mode from the Quick Menu

Important: Pressing Escape discards any unsaved programming changes.

In the Sensor Menu, a return arrow \(\Rightarrow \) in the upper left corner of the display indicates that pressing Escape returns to the parent menu.

Press and hold Escape for 2 seconds to return to Run mode from any menu or remote teach.

Laser Description and Safety Information

CAUTION: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure. Do not attempt to disassemble this sensor for repair. A defective unit must be returned to the manufacturer.

Class 2 Laser Models

CAUTION: Never stare directly into the sensor lens. Laser light can damage your eyes. Avoid placing any mirror-like object in the beam. Never use a mirror as a retroreflective target.

For Safe Laser Use - Class 2 Lasers
- Do not stare at the laser.
- Do not point the laser at a person’s eye.
- Mount open laser beam paths either above or below eye level, where practical.
- Terminate the beam emitted by the laser product at the end of its useful path.

Reference IEC 60825-1:2007, Section 8.2.

Class 2 Lasers

Class 2 lasers are lasers that emit visible radiation in the wavelength range from 400 nm to 700 nm, where eye protection is normally afforded by aversion responses, including the blink reflex. This reaction may be expected to provide adequate protection under reasonably foreseeable conditions of operation, including the use of optical instruments for intrabeam viewing.

Class 2 Laser Safety Notes

Low-power lasers are, by definition, incapable of causing eye injury within the duration of a blink (aversion response) of 0.25 seconds. They also must emit only visible wavelengths (400 to 700 nm). Therefore, an ocular hazard may exist only if individuals overcome their natural aversion to bright light and stare directly into the laser beam.

Figure 3. FDA (CDRH) warning label (Class 2)
Sensor Installation

Note: Handle the sensor with care during installation and operation. Sensor windows soiled by fingerprints, dust, water, oil, etc. may create stray light that may degrade the peak performance of the sensor. Blow the window clear using filtered, compressed air, then clean as necessary using 70% isopropyl alcohol and cotton swabs or water and a soft cloth.

Mount the Sensor

1. If a bracket is needed, mount the sensor onto the bracket.
2. Mount the sensor (or the sensor and the bracket) to the machine or equipment at the desired location. Do not tighten the mounting screws at this time.
3. Check the sensor alignment.
4. Tighten the mounting screws to secure the sensor (or the sensor and the bracket) in the aligned position.

Wiring Diagrams

![Wiring Diagram](image)

Key

1 = Brown
2 = White
3 = Blue
4 = Black
5 = Gray

*User-configurable PNP/NPN setting

Figure 4. IO-Link Models

Sensor Programming

Program the sensor using the buttons on the sensor or the remote input (limited programming options).

From Run mode, use the buttons to access the Quick Menu and the Sensor Menu. See [Quick Menu](#) on page 3, [Sensor Menu](#) on page 4, and the instruction manual (p/n 195393) for more information on the options available from each menu. For TEACH options, follow the TEACH instructions in the instruction manual.

In addition to programming the sensor, use the remote input to disable the buttons for security, preventing unauthorized or accidental programming changes. See the instruction manual for more information.

Quick Menu

The sensor includes a Quick Menu with easy access to view and change the discrete output switch points. Access the Quick Menu by pressing **Down** or **Up** from Run mode. When in the Quick Menu, the current distance measurement displays on the first line and the menu name and the discrete output switch points alternate on the second line of the display. Press **Enter** to
access the switch points. Press **Down** and **Up** to change each digit. Press **Enter** to move right one digit. After reviewing each digit, press **Enter** again to save the new value and return to the Quick Menu. Press **Cancel** to ignore any changes made if only some digits have been changed.

Quick Menu

![Quick Menu Diagram](image)

Figure 6. Quick Menu Map (Window Mode)

Sensor Menu (MENU)

Access the Sensor Menu by pressing **Enter** from Run mode. The Sensor Menu is also accessible from the Quick Menu: navigate to **MENU** and press **Enter**. The Sensor Menu includes several submenus that provide access to view and change sensor settings and to view sensor information.
Figure 7. Sensor Menu Map
Specifications

Supply Voltage
12 to 30 V dc

Power and Current Consumption (Exclusive of Load)
Normal Run Mode: < 2.1 W
Current consumption < 85 mA at 24 V dc

Supply Protection Circuitry
Protected against reverse polarity and transient overvoltages

Construction
Die-cast zinc housing; acrylic window

Maximum Torque
2.6 N·m (23.0 in-lbs)

Output Configuration
User configurable to dual discrete NPN or dual discrete PNP; the NPN/PNP polarity menus change both outputs

Output Ratings
Discrete Output: 100 mA maximum (protected against continuous overload and short circuit)
OFF-state leakage current (PNP): < 10 μA at 30 V
OFF-state leakage current (NPN): < 200 μA at 30 V
Output saturation voltage (PNP outputs): < 3 V at 100 mA
Output saturation voltage (NPN outputs): < 1.6 V at 100 mA

Remote Input
Allowable Input Voltage Range: 0 to Vcc
Active Low (internal weak pullup—sinking current):
 High State > 4.3 V at 740 μA maximum
 Low State < 1.3 V at 800 μA maximum
Active High (internal weak pulldown—sourcing current):
 High State > 4.3 V at 1.7 mA maximum
 Low State < 1.3 V at 1.6 mA maximum

Response Time
Fast: 1.5 ms
Standard: 8 ms
Medium: 32 ms
Slow: 256 ms

IO-Link Interface
Supports Smart Sensor Profile: Yes
Baud Rate: 38400 bps
Process Data Widths: 32 bits
IODD files: Provides all programming options of the display, plus additional functionality. See p/n 199517 for IO-Link reference information.

Repeatability
See Performance Curves

Storage Conditions
~30 °C to +65 °C (~22 °F to +149 °F)

Operating Conditions
~20 °C to +55 °C (~4 °F to +131 °F)
90% at +55 °C maximum relative humidity (non-condensing)

Environmental Rating
IEC IP67; NEMA 6

Shock
MIL-STD-202G, Method 213B, Condition I (100G 6x along X, Y and Z axes, 18 shocks), with device operating

Vibration
MIL-STD-202G, Method 201A (Vibration: 10 Hz to 60 Hz, 0.06 inch (1.52 mm) double amplitude, 2 hours each along X, Y and Z axes), with device operating

Application Note
For optimum performance, allow 15 minutes for the sensor to warm up

Certifications

Sensing Beam
Visible red, 660 nm

Sensing Range -- LTF12
90% White Target: 50 mm to 12000 mm
18% Gray Target: 50 mm to 11000 mm
6% Black Target: 50 mm to 7000 mm

Sensing Range -- LTF24
90% White Target: 50 mm to 24000 mm
18% Gray Target: 50 mm to 18000 mm
6% Black Target: 50 mm to 11000 mm

Ambient Light Immunity
> 40000 lux

Delay at Power Up
2 seconds

Measurement Output Rate
0.5 ms

Minimum Window Size
10 mm

Bore sighting
40 mm radius at 12000 mm
80 mm radius at 24000 mm

Temperature Effect
50 mm to 12000 mm: ±0.25 mm/°C (typical)
>12000 mm: ±0.5 mm/°C (typical)

Linearity/Accuracy

<table>
<thead>
<tr>
<th>Reflectance</th>
<th>LTF12</th>
<th>LTF24</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10 mm</td>
<td>±10 mm</td>
<td>±10 mm</td>
</tr>
<tr>
<td>±20 mm</td>
<td>±20 mm</td>
<td>±20 mm</td>
</tr>
<tr>
<td>±25 mm</td>
<td>±25 mm</td>
<td>±25 mm</td>
</tr>
<tr>
<td>±50 mm</td>
<td>±50 mm</td>
<td>±50 mm</td>
</tr>
<tr>
<td>±100 mm</td>
<td>±100 mm</td>
<td>±100 mm</td>
</tr>
</tbody>
</table>

Resolution
LTF12: < 0.3 mm to 3 mm
LTF24: < 0.3 mm to 4 mm
Resolution measured as twice repeatability with white target at slow response speed at 20 °C. See repeatability curves for more detail.

Beam Spot Size
6.5 mm at 50 mm
10 mm at 7500 mm
12.5 mm at 12000 mm
35 mm at 24000 mm
Beam spot size is calculated as 1.6 times the D4 measured diameter

Required Overcurrent Protection

<table>
<thead>
<tr>
<th>Supply Wiring (AWG)</th>
<th>Required Overcurrent Protection (Amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5.0</td>
</tr>
<tr>
<td>22</td>
<td>3.0</td>
</tr>
<tr>
<td>24</td>
<td>2.0</td>
</tr>
<tr>
<td>26</td>
<td>1.0</td>
</tr>
<tr>
<td>28</td>
<td>0.8</td>
</tr>
<tr>
<td>30</td>
<td>0.5</td>
</tr>
</tbody>
</table>

WARNING: Electrical connections must be made by qualified personnel in accordance with local and national electrical codes and regulations.

Overcurrent protection is required to be provided by end product application per the supplied table. Overcurrent protection may be provided with external fusing or via Current Limiting, Class 2 Power Supply. Supply wiring leads < 24 AWG shall not be spliced. For additional product support, go to www.bannerengineering.com.
Repeatability Performance

LTF12 Models

Figure 8. Speed: Slow (256 ms)

Figure 9. Speed: Medium (32 ms)

Figure 10. Speed: Standard (8 ms)

Figure 11. Speed: Fast (1.5 ms)

LTF24 Models

Figure 12. Speed: Slow (256 ms)

Figure 13. Speed: Medium (32 ms)
Banner Engineering Corp. Limited Warranty

Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper application or installation of the Banner product.

THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS OR IMPLIED (INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE), AND WHETHER ARISING UNDER COURSE OF PERFORMANCE, COURSE OF DEALING OR TRADE USAGE. This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGINEERING CORP. BE LIABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSSES, LOSS OF PROFITS, OR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES RESULTING FROM ANY PRODUCT DEFECT OR FROM THE USE OR INABILITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLIGENCE, OR OTHERWISE.

Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp. Any misuse, abuse, or improper application or installation of this product or use of the product for personal protection applications when the product is identified as not intended for such purposes will void the product warranty. Any modifications to this product without prior express approval by Banner Engineering Corp will void the product warranties. All specifications published in this document are subject to change; Banner reserves the right to modify product specifications or update documentation at any time. Specifications and product information in English supersede that which is provided in any other language. For the most recent version of any documentation, refer to: www.bannerengineering.com.

For patent information, see www.bannerengineering.com/patents.