R-GAGE® QT50R-RH Sensor

Datasheet

Radar-Based Retroreflective Sensors for Detection of Moving and Stationary Targets

- FMCW (true-presence) radar detects moving and stationary objects
- Retro-wave sensor - use of a reference signal (retroreflective target) enables reliable detection of weak targets in the foreground
- Retro-wave detection - output activates for objects detected in the foreground OR for loss of detection of the retroreflective target
- Easy setup and configuration of range, sensitivity, and output with simple DIP switches
- Ignores objects in the background beyond the retroreflective target
- Double reflection immunity technology
- Sensing field is configured via remote TEACH
- Sensing functions are unaffected by wind, falling rain or snow, fog, humidity, air temperatures, or light
- Sensor operates in Industrial, Scientific, and Medical (ISM) telecommunication band
- Rugged IP67 housing withstands harsh environments

Protected by US patents

CAUTION: Make No Modifications to this Product

Any modifications to this product not expressly approved by Banner Engineering could void the user’s authority to operate the product. Contact Banner Engineering for more information.

WARNING: Not To Be Used for Personnel Protection

Never use this device as a sensing device for personnel protection. Doing so could lead to serious injury or death. This device does not include the self-checking redundant circuitry necessary to allow its use in personnel safety applications. A sensor failure or malfunction can cause either an energized or de-energized sensor output condition.

Models

<table>
<thead>
<tr>
<th>Models</th>
<th>Maximum Range</th>
<th>Connection</th>
<th>Supply Voltage</th>
<th>Telecom Approval</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>QT50R-US-RH</td>
<td>12 m (39 ft)</td>
<td>5-wire 2 m (6.5 ft) integral cable</td>
<td>12 to 30 V dc</td>
<td>Telecom approved for US, Canada and Brazil</td>
<td>Bipolar NPN/PNP DIP-switch-selectable N.O. or N.C.</td>
</tr>
<tr>
<td>QT50R-EU-RH</td>
<td></td>
<td>5-wire 2 m (6.5 ft) integral cable</td>
<td>12 to 30 V dc</td>
<td>Telecom approved for Europe, UK, Australia, New Zealand, China, and Japan</td>
<td></td>
</tr>
<tr>
<td>QT50R-KR-RH</td>
<td></td>
<td></td>
<td>12 to 24 V dc</td>
<td>Telecom approved for South Korea</td>
<td></td>
</tr>
<tr>
<td>QT50R-TW-RH</td>
<td></td>
<td></td>
<td>12 to 30 V dc</td>
<td>Telecom approved for Taiwan</td>
<td></td>
</tr>
</tbody>
</table>

Overview

The R-GAGE sensor emits a well-defined beam of high-frequency radio waves from an internal antenna. This emitted energy reflects off of a retroreflective target and returns to the receiving antenna. As long as the antenna is receiving reflected radio waves, the output will remain off. If an object blocks radio waves, the output will turn on. The distance range for the retroreflective target can be configured via remote TEACH wire. Objects beyond the retroreflective target are ignored (also called background suppression). In Normally Closed mode, the output operates like a foreground suppression sensor.

1 Cabled models only are listed. For integral 5-pin Euro-style (M12) quick-disconnect fitting, add suffix “Q” to the model number (for example, QT50R-xx-RHQ). QD models require a mating cordset; see Quick Disconnect (QD) Cordsets on page 7.

2 For additional countries, contact Banner Engineering.
1. Power LED: Green (power ON)
2. Signal Strength LED: Red (flashes in proportion to the signal strength)
3. Output LEDs: Yellow (output energized); Red (configuration)

Access the DIP switches behind the threaded cap on the sensor back (not shown)

Sensor Configuration

Use the included spanner to open the screw-off cover on the back of the sensor and access the DIP switches.

Important: Tighten the DIP switch cover a full quarter turn after contact to maintain the watertight seal.

DIP Switch Functions

<table>
<thead>
<tr>
<th>Switch</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3</td>
<td>Retro Sensitivity (contrast between retroreflective target and foreground targets)</td>
</tr>
<tr>
<td>4, 5</td>
<td>Foreground Sensitivity (improve detection of near-field mirror-like targets)</td>
</tr>
<tr>
<td>6</td>
<td>Normally open/normally closed output functionality</td>
</tr>
<tr>
<td>7, 8</td>
<td>Response Speed</td>
</tr>
</tbody>
</table>

DIP switch 1 is on the left and DIP switch 8 is on the right.

Retro Sensitivity Selection

<table>
<thead>
<tr>
<th>Switch 1</th>
<th>Switch 2</th>
<th>Switch 3</th>
<th>Sensitivity</th>
<th>Contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>Use for weak retro with strong targets</td>
</tr>
</tbody>
</table>
Foreground Sensitivity/Double Reflection Immunity

* Default settings

If a radar sensor encounters a mirror-like target in the near field, for example, the roof of a vehicle, it is possible for the sensor to detect the radio waves from the ceiling or wall behind the sensor that are being reflected by the target. The target object may not be detected in this type of situation. Typically, this is only an issue on top-down target detection when the sensor is mounted directly to a metal ceiling.

The Foreground Sensitivity DIP switch settings alleviate double reflections (mirror reflections). These settings are similar to secondary echo rejection in ultrasonic sensors. Set the Foreground Sensitivity DIP switch to Highest for best performance in top-down metal ceiling-mounted vehicle detection applications.

However, if there are strong reflections from peripheral objects within the full beam pattern of the sensor, the Highest setting may cause unwanted detection of the peripheral objects. In this case, set the Foreground Sensitivity DIP switch to Medium. Foreground sensitivity is designed for double reflections, not for strong peripheral reflections. When peripheral reflections are too strong, determine whether eliminating double reflections or peripheral reflections is more important. Depending on the decision, the foreground sensitivity may be turned to low when strong peripheral reflections are detected.

The Foreground Sensitivity DIP switch has four settings ranging from highest to low. The factory default setting is low.

<table>
<thead>
<tr>
<th>Switch 4</th>
<th>Switch 5</th>
<th>Sensitivity</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Highest</td>
<td>Mirror targets (double reflections) with no peripheral reflections (widest effective beam pattern)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>High</td>
<td>Mirror targets (double reflections) with weak peripheral reflections that need to be ignored</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Medium</td>
<td>Mirror targets (double reflections) with weak peripheral reflections that need to be ignored</td>
</tr>
<tr>
<td>1*</td>
<td>1*</td>
<td>Low</td>
<td>Strong peripheral reflections that need to be ignored (narrowest effective beam pattern). Double reflection immunity is disabled.</td>
</tr>
</tbody>
</table>

Output Configuration

<table>
<thead>
<tr>
<th>Switch 6</th>
<th>Normally Open/Normally Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0*</td>
<td>N.O.</td>
</tr>
<tr>
<td>1</td>
<td>N.C.</td>
</tr>
</tbody>
</table>

* Default settings

Response Speed

<table>
<thead>
<tr>
<th>Switch 7</th>
<th>Switch 8</th>
<th>ON (ms)</th>
<th>OFF (ms)</th>
<th>Total (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>30</td>
<td>120</td>
<td>150</td>
</tr>
<tr>
<td>1*</td>
<td>0*</td>
<td>50</td>
<td>300</td>
<td>350</td>
</tr>
</tbody>
</table>
Installation

For optimal performance, the sensor should be aimed perpendicular to the surface of the retroreflective target. Angling the sensor greater than 15 degrees with respect to a flat surface is not recommended.

The retroreflective target must be the strongest target in the field of view. If another equally strong background target is in the field of view, the sensor may be taught the wrong target, or the sensing state may oscillate.

After installing, a remote TEACH must be performed to teach the sensor the retroreflective target. The sensor will not operate correctly until a TEACH is performed. A TEACH must be performed each time the sensor is moved or the retroreflective target changes.

Remote Line TEACH

The adjustable field, retroreflective target, and background suppression distances are set using a remote wire. For remote programming, connect a switch or digital input to the gray wire (remote line); length of the individual pulses is equal to the value $T: 0.064 \text{ seconds} < T < 0.8 \text{ seconds}$

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Remote Line Teach</td>
<td>• Double-pulse the remote line</td>
<td>Output LEDs ON Red</td>
</tr>
<tr>
<td>Teach Distance</td>
<td>• Single-pulse the remote wire</td>
<td>Output 1 LED flashes Red 10x</td>
</tr>
<tr>
<td>Return to Run Mode</td>
<td>If the TEACH is successful, the sensor will be in a non-sensing state (output LEDs OFF)</td>
<td>Output LEDs OFF</td>
</tr>
</tbody>
</table>

NOTE: A successful TEACH can be verified by placing an object in between the sensor and the retroreflective target after the TEACH has been performed. This should cause both Output LEDs to turn ON.

Windows

The R-GAGE sensor can be placed behind a glass or a plastic window, but the configuration must be tested and the distance from the sensor to the window must be determined and controlled prior to installation. There is typically a 20% signal reduction when the sensor is placed behind a window.

Polycarbonate at 4 mm thickness performs well in most situations, but the performance depends on filler materials. Thinner (1 to 3 mm) windows have high reflection. The amount of reflection depends on the material, thickness, and distance from the sensor to the window.

Locate the sensor in a position of minimum reflection from the window, which will repeat every 6.1 mm of distance between the sensor and the window. The positions of maximum reflection from the window repeat between the minimums, and decrease in effect until the window is approximately 150 mm (5.9 in) away. Consult the factory for pre-tested window materials which can be used at any distance without issue.

Additionally, the face of the window should be protected from flowing water and ice by use of a flow diverter or hood directly above the window. Falling rain or snow in the air in front of the window, light water mist, or small beads on the face of the window are typically not an issue. However, a thick, continuous surface of water or ice directly on the face of the window can be detected as a dielectric boundary.
Specifications

Range
The sensor is able to detect a proper retroreflective target (see Detectable Objects) up to 12 m (39.4 ft), depending on target.

Detectable Objects
Objects containing metal, water, or similar high-dielectric materials.

Operating Principle
Frequency modulated continuous-wave (FMCW) radar.

Operating Frequency
US, TW Models: 24.075–24.175 GHz, ISM Band
EU, KR Models: 24.050–24.250 GHz, ISM Band

Maximum Output Power
ERP: 3.3 mW, 5 dBm
EIRP: 100 mW, 20 dBm

Supply Voltage
12 to 30 V dc, less than 100 mA, exclusive of load
For KR models: 12 to 24 V dc, less than 100 mA exclusive of load

Supply Protection Circuitry
Protected against reverse polarity and transient overvoltages

Delay at Power-up
Less than 2 seconds

Output Configuration
Bipolar NPN/PNP output, 150mA; DIP switch 6 selects N.O. (default) or N.C. operation

Output Protection
Protected against short circuit conditions

Response Time
DIP switches 7 & 8 select ON/OFF response time

Indicators
Power LED: Green (power ON)
Signal Strength LED: Red, flashes in proportion to signal strength.
Steady on at 4x excess gain. Only indicates signal amplitude, not target distance.
Output LEDs: Yellow (output energized) / Red (configuration)
See Figure 1 on page 2

Adjustments
DIP-switch-configurable sensitivity, response time, and output configuration; remote line teach of the retroreflective target

Construction
Housing: ABS/polycarbonate
Lightpipes: Acrylic
Access Cap: Polyester

Connections
Integral 5-wire 2 m (6.5 ft) cable or M12 Euro-style QD fitting. QD models require a mating cordset

Operating Temperature
−40 °C to +65 °C (−40 °F to +149 °F)

Environmental Rating
IEC IP67

Certifications
ETSI/EN 300 440
FCC part 15
RCC-210
ANATEL Category II
CMIT Category G
ARIB STD T-73
KC mark - MSIP/RRA
NCC
for others, contact Banner Engineering
Country of Origin: USA

FCC ID: UE3QT50RUS—This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

IC: 7044A-QR50RCA—This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Cet appareil est conforme aux CNR exempts de licence d’Industrie Canada. Son fonctionnement est soumis aux deux conditions suivantes:(1) Ce dispositif ne peut causer des interférences; et(2) Ce dispositif doit accepter toute interférence, y compris les interférences qui peuvent entrainer un mauvais fonctionnement de l’appareil.

Este equipamento opera em caráter secundário, isto é, não tem direito à proteção contra interferência prejudicial, mesmo de estações do mesmo tipo e não pode causar interferência a sistemas operando em caráter primário.

SRD24-IO3B24100.2TR0.1 South Korea Class A Certification

Este equipamento opera em caráter secundário, isto é, não tem direito à proteção contra interferência prejudicial, mesmo de estações do mesmo tipo e não pode causar interferência a sistemas operando em caráter primário.

P/N 169604 Rev. E www.bannerengineering.com - Tel: +1-763-544-3164
Beam Patterns

<table>
<thead>
<tr>
<th>Typical Beam Pattern (with BRTR-CC20E Radar Target, Radar Cross Section = 50 m2)</th>
<th>Typical Beam Pattern (with 4 different targets) at sensitivity level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left-Right Beam Pattern</td>
<td>Left-Right Beam Pattern</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>Distance</td>
</tr>
<tr>
<td>1–8: Indicates sensitivity level</td>
<td>1. Weak Object (Radar cross section = 0.25 m2)</td>
</tr>
<tr>
<td></td>
<td>2. Car (Radar cross section = 3 m2)</td>
</tr>
<tr>
<td></td>
<td>3. Large Truck (Radar cross section = 50 m2)</td>
</tr>
<tr>
<td></td>
<td>4. Passenger Train (Radar cross section = 300 m2)</td>
</tr>
</tbody>
</table>

NOTE: The effective beam pattern depends on the sensitivity level and target properties.

The diagrams show the beam pattern with respect to the retroreflective target. The effective beam pattern for detection of foreground objects will be the size of the retroreflective target. For a flat retroreflective surface, the beam size is a 15 degree cone.

Dimensions

![Dimensions Diagram](image)
Wiring

12-30V dc

Wiring Key:
1 = Brown
2 = White
3 = Blue
4 = Black
5 = Gray (Float or connect to V+ for idle operation. Switch to ground for remote TEACH operation)

NOTE: Banner recommends that the shield wire (QD cordsets only) be connected to earth ground or dc common. Shielded cordsets are recommended for all QD models.

Accessories

Quick Disconnect (QD) Cordsets

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Style</th>
<th>Dimensions</th>
<th>Pinout (Female)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQDEC2-506</td>
<td>1.83 m (6 ft)</td>
<td>Straight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQDEC2-515</td>
<td>4.57 m (15 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQDEC2-530</td>
<td>9.14 m (30 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQDEC2-550</td>
<td>15.2 m (50 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQDEC2-506RA</td>
<td>1.83 m (6 ft)</td>
<td>Right-Angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQDEC2-515RA</td>
<td>4.57 m (15 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQDEC2-530RA</td>
<td>9.14 m (30 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQDEC2-550RA</td>
<td>15.2 m (50 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Pin 5 is not used.

Mounting Brackets

All measurements are in mm
SMB30SC
- Swivel bracket with 30 mm mounting hole for sensor
- Black reinforced thermoplastic polyester
- Stainless steel mounting and swivel locking hardware included

Hole center spacing: A=ø 50.8
Hole size: A=ø 7.0, B=ø 30.0

SMB30MM
- 12-ga. stainless steel bracket with curved mounting slots for versatile orientation
- Clearance for M6 (¼ in) hardware
- Mounting hole for 30 mm sensor

Hole center spacing: A = 51, A to B = 25.4
Hole size: A = 42.6 x 7, B = ø 6.4, C = ø 30.1

Retroreflective Target
BRTR-CC20E
- Large corner-cube reflector in protective plastic enclosure
- Provides 7x excess gain at 6 m

Weather Deflector
QT50RCK
- Required if the R-GAGE is exposed to rain or snow
- Prevents buildup of water or ice from interfering with sensor performance

Banner Engineering Corp. Limited Warranty
Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper application or installation of the Banner product.

THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS OR IMPLIED (INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE), AND WHETHER ARISING UNDER COURSE OF PERFORMANCE, COURSE OF DEALING OR TRADE USAGE.

This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGINEERING CORP. BE LIABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSSES, LOSS OF PROFITS, OR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES RESULTING FROM ANY PRODUCT DEFECT OR FROM THE USE OR INABILITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLIGENCE, OR OTHERWISE.

Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp. Any misuse, abuse, or improper application or installation of this product or use of the product for personal protection applications when the product is identified as not intended for such purposes will void the product warranty. Any modifications to this product without prior express approval by Banner Engineering Corp will void the product warranties. All specifications published in this document are subject to change; Banner reserves the right to modify product specifications or update documentation at any time. For the most recent version of any documentation, refer to: www.bannerengineering.com.