Datasheet

The Sure Cross® wireless system is a radio frequency network with integrated I/O that can operate in most environments and eliminate the need for wiring runs. DX99 wireless networks are formed around a Gateway, which acts as the wireless network master device, and one or more Intrinsically Safe Nodes.

- Wireless industrial I/O device with either one RS-485 input and boost voltage, or two analog inputs and boost voltage
- FlexPower® technology driven by one lithium primary battery integrated into the housing
- DIP switches for user configuration
- Frequency Hopping Spread Spectrum (FHSS) technology and Time Division Multiple Access (TDMA) control architecture ensure reliable data delivery within the unlicensed Industrial, Scientific, and Medical (ISM) band
- Transceivers provide bidirectional communication between the Gateway and Node, including fully acknowledged data transmission
- Lost RF links are detected and relevant outputs set to user-defined conditions
- DX99 Metal housings are certified for use in Class I, Division 1, Groups A, B, C, D; Class II, Division 1, Groups E, F, G; Class III, Division 1; and Zone 0 (Category 1G) and Zone 20 (Category 1D) when properly installed in accordance with the National Electrical Code, the Canadian Electrical Code, or applicable local codes/regulations

For additional information, updated documentation, and accessories, refer to Banner Engineering’s website, www.bannerengineering.com/surecross.

<table>
<thead>
<tr>
<th>Models</th>
<th>Frequency</th>
<th>Boost Voltage</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX99N9X1S1S0V2X0D4</td>
<td>900 MHz ISM Band</td>
<td>13 V</td>
<td>Inputs (Modbus Mode): One RS-485</td>
</tr>
<tr>
<td>DX99N2X1S1S0V2X0D4</td>
<td>2.4 GHz ISM Band</td>
<td></td>
<td>Inputs (Voltage Mode): Two analog</td>
</tr>
</tbody>
</table>

These models ship with the battery disconnected. To install the battery, refer to the battery replacement instructions in this datasheet.

WARNING: Not To Be Used for Personnel Protection

Never use this device as a sensing device for personnel protection. Doing so could lead to serious injury or death. This device does not include the self-checking redundant circuitry necessary to allow its use in personnel safety applications. A sensor failure or malfunction can cause either an energized or de-energized sensor output condition.

Sure Cross® User Configuration Tool

The User Configuration Tool (UCT) offers an easy way to link I/O points in your wireless network, view I/O register values graphically, and set system communication parameters when a host system is not part of the wireless network.

The User Configuration Tool (UCT) software runs on any computer with the Windows 7, Windows 8, or Windows 10 operating system. Use a USB to RS-485 adapter cable to connect a standalone DX80 Gateway to the computer. For DXM Controllers with an internal DX80 radio, connect a computer to the DXM Controller using a USB or Ethernet connection. Download the most recent revisions of the UCT software from Banner Engineering’s website: http://www.bannerengineering.com/wireless.

The USB to RS-485 adapter cable is not required for the DXM Controller. For standalone DX80 Gateway devices use:
- USB to RS-485 adapter cable model BWA-UCT-900 for 1 Watt radios
- USB to RS-485 adapter cable model BWA-HW-006 for all other radios

Setting Up Your Wireless Network

To set up and install your wireless network, follow these steps.

Disconnect the power from your Sure Cross devices.

Original Document
25 May 2016
159408 Rev. F
1. Configure the DIP switches of all devices.
2. If your device has I/O, connect the sensors to the Sure Cross devices. If your device does not have I/O, skip this step.
3. Refer to the wiring diagrams to apply power to all devices.
 - For two LED models, the Gateway's LED 1 is solid green and the Node's LED 2 flashes red to indicate there is no radio link to the Gateway.
 - For one LED models, the Gateway's LED is solid green and the Node's LED flashes red to indicate there is no radio link to the Gateway.
4. Form the wireless network by binding the Nodes to the Gateway. If the binding instructions are not included in the datasheet, refer to the product manual for binding instructions.
5. Observe the LED behavior to verify the devices are communicating with each other.
 - For two LED models, the Gateway's LED 1 is solid green and the Node's LED 1 flashes green to indicate it is communicating with the Gateway.
 - For one LED models, the Gateway's LED is solid green and the Node's LED flashes green to indicate it is communicating with the Gateway.
6. Conduct a site survey between the Gateway and Nodes. If the site survey instructions are not included in this datasheet, refer to the product manual for detailed site survey instructions.
7. Install your wireless sensor network components. If installation instructions are not included in this datasheet, refer to the product manual for detailed installation instructions.

For additional information, including installation and setup, weatherproofing, device menu maps, troubleshooting, and a list of accessories, refer to one of the following product manuals.

- Sure Cross® Wireless I/O Network Instruction Manual: 132607
- Web Configurator Instruction Manual (used with "Pro" and DX83 models): 134421
- Host Controller Systems Instruction Manual: 132114

Configure the DIP Switches

Before making any changes to the DIP switch positions, disconnect the power. DIP switch changes will not be recognized if power isn't cycled to the device. For devices with batteries integrated into the housing, remove the battery for at least one minute.

Accessing the DIP Switches of a Single-Chamber Metal Housing

The DIP switches are located behind the rotary dials.

To access the DIP switches, follow these steps:
1. Unscrew and remove the top of the DX99 metal housing. The top section is the section with the glass window.
2. Pull the radio cover section off the bracket assembly. Two pins hold the radio cover to the bracket assembly.
3. Gently unplug the ribbon cable from the back of the radio cover.
4. Remove the black cover plate from the bottom of the device's cover.

 The DIP switches are located behind the rotary dials.

 After making the necessary changes to the DIP switches, place the black cover plate back into position and gently push into place. Plug the ribbon cable in after verifying that the blocked hole lines up with the missing pin. Mount the cover back onto the bracket assembly.

DIP Switch Settings (RS-485 Boost)

* Default configuration

Address Mode

The Sure Cross® wireless devices may use one of two types of addressing modes: rotary dial addressing or extended addressing. In **rotary dial** address mode, the left rotary dial establishes the network ID (NID) and the right rotary dial sets the device address. **Extended** address mode uses a security code to "bind" Nodes to a specific Gateway. Bound Nodes can only send and receive information from the Gateway they are bound to.

<table>
<thead>
<tr>
<th>DIP Switches</th>
<th>Device Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Device Settings</td>
</tr>
<tr>
<td>OFF</td>
<td>Rotary dial address mode</td>
</tr>
<tr>
<td>ON</td>
<td>Extended address mode</td>
</tr>
</tbody>
</table>
Modbus/UCT Configuration or DIP Switch Configuration Mode

In Modbus/UCT Configured mode, the device parameters are changed using the User Configuration Tool (UCT) or a Modbus command. All DIP switch positions are ignored. In DIP Switch Configured mode, use the DIP switches to configure the parameters listed in the table.

<table>
<thead>
<tr>
<th>DIP Switches</th>
<th>Device Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Modbus or UCT configured (overrides DIP switches)</td>
</tr>
<tr>
<td>ON</td>
<td>DIP switch configured</td>
</tr>
</tbody>
</table>

Modbus or Voltage Input Mode

When operating in Modbus mode, this DX99 device is configured to work with the Siemens Tank Monitoring Level Sensor, Model 2100. When operating in Modbus input configuration mode, DIP switches 4 and 5 are ignored.

To use other sensors, configure this device to operate in voltage input mode. While operating in voltage input mode, use DIP switches 4 and 5 to configure the voltage range for your inputs and the number of inputs available.

<table>
<thead>
<tr>
<th>DIP Switches</th>
<th>Device Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Modbus input configuration mode</td>
</tr>
<tr>
<td>4</td>
<td>Voltage input mode</td>
</tr>
<tr>
<td>5</td>
<td>One voltage input</td>
</tr>
<tr>
<td>ON</td>
<td>Two voltage inputs</td>
</tr>
</tbody>
</table>

Warm-Up Time and Sample/Report Rate

The warm-up time defines how long the device must power up the sensor before a stable sensor reading is taken. The sample/report rate defines how often the sensor is sampled and the values transmitted to the Gateway.

<table>
<thead>
<tr>
<th>DIP Switches</th>
<th>Device Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>10 ms warm-up every 250 ms (sample/report rate)</td>
</tr>
<tr>
<td>7</td>
<td>10 ms warm-up every 1 second (sample/report rate)</td>
</tr>
<tr>
<td>8</td>
<td>250 ms warm-up every 4 seconds (sample/report rate)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I/O</th>
<th>Modbus Holding Register</th>
<th>I/O Type</th>
<th>I/O Range</th>
<th>Holding Register Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway</td>
<td>Any Node</td>
<td>1 + (Node# x 16)</td>
<td>Float 1, Reg 43991</td>
<td>Min.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>65535</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>65535</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>65535</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>65535</td>
</tr>
</tbody>
</table>
Modbus Holding Register Table

<table>
<thead>
<tr>
<th>I/O</th>
<th>Modbus Holding Register</th>
<th>I/O Type</th>
<th>I/O Range</th>
<th>Holding Register Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Any Node</td>
<td></td>
<td>Min. (Dec.)</td>
<td>Max. (Dec.)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5 + (Node# × 16)</td>
<td>Warning, Reg 44007</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6 + (Node# × 16)</td>
<td>Reserved</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7 + (Node# × 16)</td>
<td>Device Message</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8 + (Node# × 16)</td>
<td>Reserved</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15 + (Node# × 16)</td>
<td>Control Message</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16 + (Node# × 16)</td>
<td>Reserved</td>
<td>0</td>
</tr>
</tbody>
</table>

Modbus Register Table for Voltage Input Mode

<table>
<thead>
<tr>
<th>I/O</th>
<th>Modbus Holding Register</th>
<th>I/O Type</th>
<th>I/O Range</th>
<th>Holding Register Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Any Node</td>
<td></td>
<td>Min. (Dec.)</td>
<td>Max. (Dec.)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 + (Node# × 16)</td>
<td>Analog IN 1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2 + (Node# × 16)</td>
<td>Analog IN 2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7 + (Node# × 16)</td>
<td>Reserved</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8 + (Node# × 16)</td>
<td>Device Message</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15 + (Node# × 16)</td>
<td>Control Message</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16 + (Node# × 16)</td>
<td>Reserved</td>
<td>0</td>
</tr>
</tbody>
</table>

* When using the 0–5V analog scale, the minimum and maximum register values are represented by 0 (0.00 Volts) to 32786 (5.00 Volts).

Terminal Blocks and Wiring

The complete control drawing is document **141513** at www.bannerengineering.com. In the control drawings, this device is the RS-485 Vin model.

The GND connection can be considered the same as the housing ground when using a stainless steel antenna feedthrough (model BWA-HW-016 or BWA-HW-017). When the stainless steel antenna feedthroughs are not used, the GND connection is isolated from the metal housing.

- AIX or Ax. Analog IN x
- BAT. Internal battery connection
- DIX. Discrete IN x
- GND. Ground/dc common connection
- SPx. Switch Power; provides variable power sources for external devices

Control Drawings
RS-485 Cin/Vin - Single Chamber Metal Housing (DX99..D)

RS-485 Cin/Vin

RS-485 Cin/Vin - without Analog IN

RS-485 Cin/Vin - Powered Externally from the FlexPower Node

RS-485 Cin/Vin - Powered Externally from the FlexPower Node

* denotes an optional 3-wire GND connection

<table>
<thead>
<tr>
<th>Entity Parameters - 21</th>
<th>Entity Parameters - 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_o/V_{oc}</td>
<td>U_i/V_{max}</td>
</tr>
<tr>
<td>5.88 V</td>
<td>30 V</td>
</tr>
<tr>
<td>I_o/I_{sc}</td>
<td>I_i/I_{max}</td>
</tr>
<tr>
<td>1.80 mA</td>
<td>120 mA</td>
</tr>
<tr>
<td>P_o</td>
<td>P_i</td>
</tr>
<tr>
<td>2.65 mW</td>
<td>840 mW</td>
</tr>
<tr>
<td>C_o/C_{a}</td>
<td>C_i</td>
</tr>
<tr>
<td>43 µF</td>
<td>0</td>
</tr>
<tr>
<td>L_o/L_{a}</td>
<td>L_i</td>
</tr>
<tr>
<td>12.3 H</td>
<td>0</td>
</tr>
</tbody>
</table>
Entity Parameters - 23

<table>
<thead>
<tr>
<th></th>
<th>10 V</th>
<th>13 V</th>
<th>18 V</th>
<th>19 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uo/Voc</td>
<td>12.6 V</td>
<td>15.75 V</td>
<td>21 V</td>
<td>23.1 V</td>
</tr>
<tr>
<td>Io/Isc</td>
<td>34.89 mA</td>
<td>78.22 mA</td>
<td>94.75 mA</td>
<td>114.56 mA</td>
</tr>
<tr>
<td>Po</td>
<td>110 mW</td>
<td>308 mW</td>
<td>498 mW</td>
<td>662 mW</td>
</tr>
<tr>
<td>Co/Ca</td>
<td>1104 nF</td>
<td>432 nF</td>
<td>142 nF</td>
<td>94 nF</td>
</tr>
<tr>
<td>Lo/La</td>
<td>32.8 mH</td>
<td>6.5 mH</td>
<td>4.4 mH</td>
<td>3.0 mH</td>
</tr>
</tbody>
</table>

Entity Parameters - 25

<table>
<thead>
<tr>
<th></th>
<th>10 V</th>
<th>13 V</th>
<th>18 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uo/Voc</td>
<td>12.6 V</td>
<td>15.75 V</td>
<td>21 V</td>
</tr>
<tr>
<td>Io/Isc</td>
<td>44.59 mA</td>
<td>87.92 mA</td>
<td>104.45 mA</td>
</tr>
<tr>
<td>Po</td>
<td>141 mW</td>
<td>347 mW</td>
<td>549 mW</td>
</tr>
<tr>
<td>Lo/La</td>
<td>Group A, B, IIC: 20.1 mH, Group C, IIB: 80.4 mH, Group D, IIA: 160.9 mH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** The number of field devices connected to XC−, XC+, GND, SPx are limited by the following notes 1 and 2.

1. The total capacitance of all field devices/ cables that may be connected to terminals of Group 23 and Group 25 must not exceed the Co/Ca value shown in the table.

2. The total inductance of all field devices/cables that may be connected to terminals of Group 23 and Group 25 must not exceed the Lo/La values shown in the table.

Metal Enclosure

- **CSA C/US**: Class I, Division 1, Groups A, B, C, D
 Class II, Division 1, Groups E, F, G
 Class III, Division 1
 Class I, Zone 0, Group IIC
- **LCIE/ATEX**: Group IIC, Zone 0
 Dust, Zone 20

LED Behavior for the Nodes

Nodes do not sample inputs until they are communicating with the Gateway. The radios and antennas must be a minimum distance apart to function properly. Recommended minimum distances are:

- 2.4 GHz 65 mW radios: 1 foot
- 900 MHz 150 mW and 250 mW radios: 6 feet
- 900 MHz 1 Watt radios: 15 feet

<table>
<thead>
<tr>
<th>LED 1</th>
<th>LED 2</th>
<th>Node Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing green</td>
<td></td>
<td>Radio Link Ok</td>
</tr>
</tbody>
</table>
Storage and Sleep Modes

Storage Mode (applies to battery-powered models only)—While in storage mode, the radio does not operate. All Sure Cross® radios powered from an integrated battery ship from the factory in storage mode to conserve the battery. To wake the device, press and hold button 1 for 5 seconds. To put any FlexPower® or integrated battery Sure Cross radio into storage mode, press and hold button 1 for 5 seconds. The radio is in storage mode when the LEDs stop blinking, but in some models, the LCD remains on for an additional minute after the radio enters storage mode. After a device has entered storage mode, you must wait 1 minute before waking it.

Sleep Mode (applies to both battery and 10–30 V dc powered models)—During normal operation, the Sure Cross radio devices enter sleep mode after 15 minutes of operation. The radio continues to function, but the LCD goes blank. To wake the device, press any button.

Assembly

Follow these steps to assemble your DX99...D Metal Housing with Dome Antenna model. The DX99 unit ships as a complete unit, including the radio core, housing, and integrated battery. One terminal header is also included in the shipment. To unpack and wire the unit:

![Figure 1. Installing the Battery and Terminal Header](image)

Step 1. Open the end with the glass window (5) and gently lift the radio core unit (4) and the space frame it sits on up. The core unit connects to the space frame using two pins and the radio core is connected to the wiring board with a ribbon cable.

Step 2. Disconnect the ribbon cable from the radio.

Step 3. Insert the battery (2) into the battery holder, verifying the position and negative poles of the battery are positioned according to the markings on the board.

Step 4. Install the terminal header (3) onto the terminal pins.

Step 5. Insert your sensor wires through a cable gland and one of the two 1/2-inch NPT ports. Wire the sensor wires into the terminal header (3) according to the control drawings, p/n 141513. Use a cable gland certified for your region and environment. For a waterproof seal, refer to the waterproofing instructions in Banner document 132607.
Step 6. To install the dome antenna (2), thread the antenna cable through the 1/2-inch NPT port and screw the dome antenna to the 1/2-inch NPT port.

Step 7. Connect the antenna cable (3) to the radio unit’s antenna connector (5). (You may need to separate the space frame from the radio to do this.)

Step 8. Gently install the ribbon cable (4) into the ribbon cable pins (6), verifying the ribbon cable is seated on both rows of pins.

Step 9. Reconnect the space frame (not shown) to the radio core unit.

Step 10. Place the radio unit into the housing and gently push down until the spacer frame pin holes rest on the edge of the metal housing.

Step 11. Close the metal cover firmly and lock closed using the set screw.

Replacing the Battery (DX99...D Models)

To replace the lithium "D" cell battery in the metal housings, follow these steps.

1. Unscrew the lid of the metal enclosure.
2. Lift the radio out of the metal enclosure and pull the spacer frame off the back side of the radio.
3. Disconnect the radio by unplugging the ribbon cable from the radio board and set aside the radio and spacer frame.
4. Remove the discharged battery.
5. Replace with a new battery. Only use a 3.6 V lithium battery from Xeno, model number XL-205F.
6. Verify the battery’s positive and negative terminals align to the positive and negative terminals of the battery holder mounted within the case. Caution: There is a risk of explosion if the battery is replaced incorrectly.
7. Wait two minutes.
8. Insert the ribbon cable through the center of the spacer frame, then plug the ribbon cable back into the radio board.
9. Insert the radio back onto the spacer frame pins. Push the radio and spacer frame assembly back into the enclosure until it is seated.
10. Screw on the lid and tighten.
11. After replacing the battery, allow up to 60 seconds for the device to power up.
12. Properly dispose of your used battery according to local regulations by taking it to a hazardous waste collection site, an e-waste disposal center, or other facility qualified to accept lithium batteries.

As with all batteries, these are a fire, explosion, and severe burn hazard. Do not burn or expose them to high temperatures. Do not recharge, crush, disassemble, or expose the contents to water.

The battery may be replaced in explosive gas atmospheres. Replacement battery model number: BWA-BATT-001. For pricing and availability, contact Banner Engineering.

WARNING:
- Do not replace battery when an explosive dust atmosphere may be present.
- The replacement battery MUST be a Banner approved battery, model number BWA-BATT-001. Use of a different battery will VOID the intrinsic safety rating of this device and may result in an explosion!
- When replacing the battery, the negative end of the battery holder is the side by the large capacitors. This side is marked with a minus (−) sign.
- Do not attempt to recharge the battery. These batteries are not rechargeable. Recharging may cause serious injury to personnel or damage the equipment. Replace only with factory recommended batteries.

Specifications

Radio Range
- 900 MHz, 150 mW: Up to 4.8 km (3 miles)
- 2.4 GHz, 65 mW: Up to 3.2 km (2 miles)

Minimum Separation Distance
- 900 MHz, 150 mW: 2 m (6 ft)
- 2.4 GHz, 65 mW: 0.3 m (1 ft)

Transmit Power
- 900 MHz, 150 mW: 21 dBm (150 mW) conducted
- 2.4 GHz, 65 mW: 18 dBm (65 mW) conducted, less than or equal to 20 dBm (100 mW) EIRP

900 MHz Compliance
- FCC ID TGUDX80 - This device complies with FCC Part 15, Subpart C, 15.247
- IC: 7044A-DX8009

2.4 GHz Compliance
- FCC ID UE300DX80-2400 - This device complies with FCC Part 15, Subpart C, 15.247
- ETSI EN 300 328 V1.8.1 (2012-06)
- IC: 7044A-DX8024

Supply Voltage
- 3.6 V dc low power option from an internal battery

Power Consumption
- Consumption: Application dependant

Housing
- Glass and cast aluminium w/ chromating and chemically resistant paint (outside only)

Antenna Connection
- Ext. Reverse Polarity SMA, 50 Ohms
- Max Tightening Torque: 0.45 N·m (4 lbf·in)

Spread Spectrum Technology
- FHSS (Frequency Hopping Spread Spectrum)

Interface
- Indicators: Two bi-color LEDs
- Buttons: Two
- Display: Six character LCD

Wiring Access
- Two 1/2-inch NPT ports, one 3/4-inch NPT port (internal threads)
Siemens Tank Monitoring Level Sensor Inputs
- Float 1, Float 2, and Temp Sample Rate: 2 minutes
- Float 1, Float 2, and Temp Report Rate: 2 minutes
- Float 1, Float 2, and Temp Warmup Time: 250 ms
- Error and Warning Sample Rate: 15 minutes
- Error and Warning Report Rate: 15 minutes
- Error and Warning Warmup Time: 250 ms

The RS-485 inputs were designed to be used with Siemens Tank Monitoring Level Sensor, model 2100.

Environmental Rating
- IEC IP68

Operating Conditions
- –40 °C to +65 °C (–40 °F to +149 °F) (Electronics); –20 °C to +80 °C
 (–4 °F to +176 °F) (LCD)
- 95% maximum relative humidity (non-condensing)
- Radiated Immunity: 10 V/m (EN 61000-4-3)

Shock and Vibration
- IEC 68-2-6 and IEC 68-2-27
- Shock: 30g, 11 millisecond half sine wave, 18 shocks
- Vibration: 0.5 mm p-p, 10 to 60 Hz

RS-485 Inputs
- Interface: 2-wire half-duplex RS-485
- Baud Rates: 9.6k, 19.2k (default), or 38.4k
- Data Format: 8 data bits, no parity, 1 stop bit (even and odd parity selection are available)

Analog Inputs
- Rating for 0-10V inputs: 10 V
- Rating for 0-5V inputs: 5V
- Sample Rate: 250 milliseconds
- Report Rate: 250 milliseconds
- Accuracy: 0.1% of full scale +0.01% per °C
- Resolution: 15-bit

Certifications
- CSA: Class I, Division 1, Groups A, B, C, D; Class II, Division 1, Groups E, F, G; Class III, Division 1 (Ex ia IIC T4 / AEx ia IIC T4)
- Certificate: 2008243
- LCIE/ATEX: Zone 0 (Category 1G) and 20 (Category 1D), Temperature Class T4 (II 1 GD / Ex ia IIC T4 Ga / Ex ia IIIC T82°C
- Do IP68) Certificate: LCIE 08 ATEX 6098 X

Special Conditions for Safe Use imposed by Intrinsic Safety Certificate LCIE 08 ATEX 6098 X: Ambient temperature range is –40 to 70 °C.

Sure Cross® DX99 FlexPower Node

Metal Housing Dimensions
Included with Device (Metal Housing with Dome Antenna)

<table>
<thead>
<tr>
<th>Model</th>
<th>Qty</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dome Antenna</td>
<td>1</td>
<td>Dome Antenna, 902-928 MHz, 2 dBi Omni, 1/2-inch NPT, 18" cable, or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dome Antenna, 2.4 GHz, 2 dBi Omni, 1/2-inch NPT, 18" cable</td>
</tr>
<tr>
<td>BWA-HW-024</td>
<td>1</td>
<td>Terminal strip header, 14 position</td>
</tr>
</tbody>
</table>

Warnings

Install and properly ground a qualified surge suppressor when installing a remote antenna system. Remote antenna configurations installed without surge suppressors invalidate the manufacturer's warranty. Keep the ground wire as short as possible and make all ground connections to a single-point ground system to ensure no ground loops are created. No surge suppressor can absorb all lightning strikes; do not touch the Sure Cross® device or any equipment connected to the Sure Cross device during a thunderstorm.

Exporting Sure Cross® Radios. It is our intent to fully comply with all national and regional regulations regarding radio frequency emissions. Customers who want to re-export this product to a country other than that to which it was sold must ensure the device is approved in the destination country. A list of approved countries appears in the Radio Certifications section of the product manual. The Sure Cross wireless products were certified for use in these countries using the antenna that ships with the product. When using other antennas, verify you are not exceeding the transmit power levels allowed by local governing agencies. Consult with Banner Engineering Corp. if the destination country is not on this list.

Any misuse, abuse, or improper application or installation of this product or use of the product for personal protection applications when the product is identified as not intended for such purposes will void the product warranty. Any modifications to this product without prior express approval by Banner Engineering Corp will void the product warranties. All specifications published in this document are subject to change; Banner reserves the right to modify product specifications or update documentation at any time. For the most recent version of any documentation, refer to: www.bannerengineering.com. © Banner Engineering Corp. All rights reserved.

Banner Engineering Corp. Limited Warranty

Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper application or installation of the Banner product.

THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS OR IMPLIED (INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE), AND WHETHER ARISING UNDER COURSE OF PERFORMANCE, COURSE OF DEALING OR TRADE USAGE.

This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGINEERING CORP. BE LIABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSSES, LOSS OF PROFITS, OR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES RESULTING FROM ANY PRODUCT DEFECT OR FROM THE USE OR INABILITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLIGENCE, OR OTHERWISE.

Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp.