Sure Cross® DX99 FlexPower Thermocouple Node (Metal Housing)

Datasheet

The Sure Cross® wireless system is a radio frequency network with integrated I/O that operates in most environments to eliminate the need for wiring runs. DX99 wireless networks are formed around a Gateway, which acts as the wireless network master device, and one or more Intrinsically Safe Nodes.

- Wireless industrial I/O device with two selectable discrete inputs and up to three configurable thermocouple inputs (defaults to J-type)
- FlexPower® technology driven by one lithium primary battery integrated into the housing
- One thermistor input used for integrated cold junction compensation (CJC)
- DIP switches for user configuration
- Frequency Hopping Spread Spectrum (FHSS) technology and Time Division Multiple Access (TDMA) control architecture ensure reliable data delivery within the unlicensed Industrial, Scientific, and Medical (ISM) band
- Transceivers provide bidirectional communication between the Gateway and Node, including fully acknowledged data transmission
- Lost RF links are detected and relevant outputs set to user-defined conditions
- DX99 Metal housings are certified for use in Class I, Division 1, Groups A, B, C, D; Class II, Division 1, Groups E, F, G; Class III, Division 1; and Zone 0 (Category 1G) and Zone 20 (Category 1D) when properly installed in accordance with the National Electrical Code, the Canadian Electrical Code, or applicable local codes/regulations

Model | Frequency | I/O

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX99N9X1S2N0T4X0D0</td>
<td>900 MHz ISM Band</td>
<td>Inputs: Two selectable discrete, three thermocouple, one thermistor (for CJC)</td>
</tr>
<tr>
<td>DX99N2X1S2N0T4X0D0</td>
<td>2.4 GHz ISM Band</td>
<td></td>
</tr>
</tbody>
</table>

These models ship with the battery disconnected. To install the battery, refer to the battery replacement instructions in this datasheet.

WARNING: Not To Be Used for Personnel Protection

Never use this device as a sensing device for personnel protection. Doing so could lead to serious injury or death. This device does not include the self-checking redundant circuitry necessary to allow its use in personnel safety applications. A sensor failure or malfunction can cause either an energized or de-energized sensor output condition.

Sure Cross® User Configuration Tool

The User Configuration Tool (UCT) offers an easy way to link I/O points in your wireless network, view I/O register values, and set system communication parameters when a host system is not part of the wireless network. The software runs on any computer with the Windows Vista, Windows 7, Windows 8, or Windows 10 operating system.

Use a USB to RS-485 adapter cable to connect a standalone DX80 Gateway to the computer. For DXM Controllers with an internal DX80 radio, connect a computer to the DXM Controller using a USB or Ethernet connection. Download the most recent revisions of the UCT software from Banner Engineering’s website: www.bannerengineering.com/wireless.

The USB to RS-485 adapter cable is not required for the DXM Controller. For standalone DX80 Gateway devices use:

- USB to RS-485 adapter cable model BWA-UCT-900 for 1 Watt radios
- USB to RS-485 adapter cable model BWA-HW-006 for all other radios

Setting Up Your Wireless Network

To set up and install your wireless network, follow these steps.

1. Disconnect the power from your Sure Cross devices.
2. Configure the DIP switches of all devices.
2. If your device has I/O, connect the sensors to the Sure Cross devices. If your device does not have I/O, skip this step.

3. Refer to the wiring diagrams to apply power to all devices.
 - For two LED models, the Gateway's LED 1 is solid green and the Node's LED 2 flashes red to indicate there is no radio link to the Gateway.
 - For one LED models, the Gateway's LED is solid green and the Node's LED flashes red to indicate there is no radio link to the Gateway.

4. Form the wireless network by binding the Nodes to the Gateway. If the binding instructions are not included in the datasheet, refer to the product manual for binding instructions.

5. Observe the LED behavior to verify the devices are communicating with each other.
 - For two LED models, the Gateway's LED 1 is solid green and the Node's LED 1 flashes green to indicate it is communicating with the Gateway.
 - For one LED models, the Gateway's LED is solid green and the Node's LED flashes green to indicate it is communicating with the Gateway.

6. Configure any I/O points to use the sensors connected to the Sure Cross devices.

7. Conduct a site survey between the Gateway and Nodes. If the site survey instructions are not included in this datasheet, refer to the product manual for detailed site survey instructions.

8. Install your wireless sensor network components. If installation instructions are not included in this datasheet, refer to the product manual for detailed installation instructions.

For additional information, including installation and setup, weatherproofing, device menu maps, troubleshooting, and a list of accessories, refer to one of the following product manuals.

- Sure Cross® Wireless I/O Network Instruction Manual: 132607
- Web Configurator Instruction Manual (used with "Pro" and DX83 models): 134421
- Host Controller Systems Instruction Manual: 132114

Configure the DIP Switches

Before changing DIP switch positions, disconnect the power. For devices with batteries integrated into the housing, remove the battery(ies) for at least one minute. DIP switch changes are not recognized until after power is cycled to the device.

Accessing the DIP Switches of a Single-Chamber Metal Housing

The DIP switches are located behind the rotary dials.

To access the DIP switches, follow these steps:

1. Unscrew and remove the top of the DX99 metal housing. The top section is the section with the glass window.
2. Pull the radio cover section off the bracket assembly. Two pins hold the radio cover to the bracket assembly.
3. Gently unplug the ribbon cable from the back of the radio cover.
4. Remove the black cover plate from the bottom of the device’s cover.
 - The DIP switches are located behind the rotary dials.
 - After making the necessary changes to the DIP switches, place the black cover plate back into position and gently push into place. Plug the ribbon cable in after verifying that the blocked hole lines up with the missing pin. Mount the cover back onto the bracket assembly.

DIP Switch Settings

<table>
<thead>
<tr>
<th>Device Settings</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary switch address mode</td>
<td>OFF*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended address mode</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp °Fahrenheit</td>
<td>OFF*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp °Celsius</td>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High resolution (0.1 degree) **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OFF*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low resolution (1 degree)</td>
<td></td>
<td></td>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete sinking inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OFF*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete sourcing inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>
Switches

<table>
<thead>
<tr>
<th>Device Settings</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple, J-Type</td>
<td>OFF*</td>
<td>OFF*</td>
<td>OFF*</td>
<td>OFF*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, B-Type</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, C-Type</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, D-Type</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, E-Type</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, G-Type</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, K-Type</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, L-Type</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, M-Type</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, N-Type</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, P-Type</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, R-Type</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, S-Type</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, T-Type</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple, U-Type</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modbus or UCT configured</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Default configuration

** In high resolution mode, the temperature = (Modbus register value) ÷ 20. In low resolution mode, the temperature = (Modbus register value) ÷ 2.

Address Mode

The SureCross wireless devices may use one of two types of addressing modes: rotary dial addressing or extended addressing. In **rotary dial address mode**, the left rotary dial establishes the network ID and the right rotary dial sets the device ID. The wireless network is restricted to a maximum of 16 devices.

Extended address mode uses a security code to “bind” Nodes to a specific Gateway. Bound Nodes can only send and receive information from the Gateway to which they are bound. In extended address mode, wireless networks may contain up to 48 radio devices. For more information on extended address mode, refer to the SureCross™ Wireless I/O Network product manual.

The device ships in rotary dial address mode by default, with the DIP switch in the OFF position. To use extended address mode, change the DIP switch to the ON position.

Discrete Input Type

Select the type of discrete input sensors to use with this device: sourcing (PNP) sensors or sinking (NPN) sensors.

Modbus/User Configuration Tool (UCT) or DIP Switch Configured

In **Modbus/UCT Configured** mode, use the User Configuration Tool (UCT) or a Modbus command to change the device parameters. DIP switch positions 3 through 8 are ignored. In **DIP Switch Configured** mode, use the DIP switches to configure the parameters listed in the table.

Temperature Resolution

When set to high resolution, temperature values are stored to the nearest tenth (0.1) of a degree (default position). To measure temperatures above 1600 degrees Fahrenheit or 1600 degrees Celsius, switch the DIP switch to the ON position and use low resolution mode. In high resolution, the device cannot store values larger than 1600.

Temperature Units

Use the DIP switch to specify if the temperature is stored in degrees Fahrenheit or Celsius. The default position is OFF, setting the temperature to Fahrenheit. For Celsius measurements, set this switch to the ON position.
Thermocouple Type

Use DIP switches 5, 6, 7, and 8 to select the thermocouple type. The default position is the OFF position for all switches, setting the thermocouple to a J-type thermocouple.

Supported Thermocouple Types

The thermocouple Node is configured, by default, to use J-type thermocouples. The following thermocouples are available by configuring the Node.

<table>
<thead>
<tr>
<th>Thermocouple</th>
<th>Range °F</th>
<th>Range °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type B</td>
<td>212 to 3,272 °F</td>
<td>100 to 1,800 °C</td>
</tr>
<tr>
<td>Type C</td>
<td>32 to 4,208 °F</td>
<td>0 to 2,320 °C</td>
</tr>
<tr>
<td>Type E</td>
<td>-58 to 1,832 °F</td>
<td>-50 to 1,000 °C</td>
</tr>
<tr>
<td>Type J</td>
<td>-292 to 1,382 °F</td>
<td>-180 to 750 °C</td>
</tr>
<tr>
<td>Type K</td>
<td>-292 to 2,282 °F</td>
<td>-180 to 1,250 °C</td>
</tr>
<tr>
<td>Type L</td>
<td>-328 to 1,652 °F</td>
<td>-200 to 900 °C</td>
</tr>
<tr>
<td>Type N</td>
<td>32 to 2,192 °F</td>
<td>0 to 1,200 °C</td>
</tr>
<tr>
<td>Type R</td>
<td>32 to 2,912 °F</td>
<td>0 to 1,600 °C</td>
</tr>
<tr>
<td>Type S</td>
<td>32 to 2,642 °F</td>
<td>0 to 1,450 °C</td>
</tr>
<tr>
<td>Type T</td>
<td>-238 to 752 °F</td>
<td>-150 to 400 °C</td>
</tr>
<tr>
<td>Type U</td>
<td>-148 to 1,112 °F</td>
<td>-100 to 600 °C</td>
</tr>
</tbody>
</table>

Terminal Blocks and Wiring

The complete control drawing is document 141513 at www.bannerengineering.com.

The GND connection can be considered the same as the housing ground when using a stainless steel antenna feedthrough (model BWA-HW-016 or BWA-HW-017). When the stainless steel antenna feedthroughs are not used, the GND connection is isolated from the metal housing.

Ax+ and Ax−. Analog IN x. Analog inputs for devices requiring more than one connection, such as thermocouples or RTDs. When there is no Ax−, use Ax+ as an analog input.

DIx. Discrete IN x

GND. Ground/dc common connection

Control Drawings
Thermocouple Node - Single Chamber Metal Housing (DX99..D)

For the DX99..D with the single battery supply.

<table>
<thead>
<tr>
<th>Entity Parameters - 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uo/Voc</td>
</tr>
<tr>
<td>Io/Isc</td>
</tr>
<tr>
<td>Po</td>
</tr>
<tr>
<td>Co/Ca</td>
</tr>
<tr>
<td>Lo/La</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entity Parameters - 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uo/Voc</td>
</tr>
<tr>
<td>Io/Isc</td>
</tr>
<tr>
<td>Po</td>
</tr>
<tr>
<td>Co/Ca</td>
</tr>
<tr>
<td>Lo/La</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entity Parameters - 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uo/Voc</td>
</tr>
<tr>
<td>Io/Isc</td>
</tr>
<tr>
<td>Po</td>
</tr>
<tr>
<td>Co/Ca</td>
</tr>
<tr>
<td>Lo/La</td>
</tr>
</tbody>
</table>

LED Behavior for the Nodes

Nodes do not sample inputs until they are communicating with the Gateway. The radios and antennas must be a minimum distance apart to function properly. Recommended minimum distances are:
- 2.4 GHz 65 mW radios: 1 foot
- 900 MHz 150 mW and 250 mW radios: 6 feet
- 900 MHz 1 Watt radios: 15 feet

<table>
<thead>
<tr>
<th>LED 1</th>
<th>LED 2</th>
<th>Node Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing green</td>
<td>Radio Link Ok</td>
<td></td>
</tr>
<tr>
<td>Flashing red</td>
<td>Device Error</td>
<td></td>
</tr>
<tr>
<td>Flashing red, 1 per 3 sec</td>
<td>No Radio Link</td>
<td></td>
</tr>
</tbody>
</table>

Models

<table>
<thead>
<tr>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX99N9X152N0T4X0D0</td>
</tr>
<tr>
<td>DX99N2X152N0T4X0D0</td>
</tr>
</tbody>
</table>
Storage and Sleep Modes

Storage Mode (applies to battery-powered models only)—While in *storage mode*, the radio does not operate. All Sure Cross® radios powered from an integrated battery ship from the factory in storage mode to conserve the battery. To wake the device, press and hold button 1 for 5 seconds. To put any FlexPower® or integrated battery Sure Cross radio into storage mode, press and hold button 1 for 5 seconds. The radio is in storage mode when the LEDs stop blinking, but in some models, the LCD remains on for an additional minute after the radio enters storage mode. After a device has entered storage mode, you must wait 1 minute before waking it.

Sleep Mode (applies to both battery and 10–30 V dc powered models)—During normal operation, the Sure Cross radio devices enter *sleep mode* after 15 minutes of operation. The radio continues to function, but the LCD goes blank. To wake the device, press any button.

Modbus Register Table (High Resolution Mode, DX99)

<table>
<thead>
<tr>
<th>I/O</th>
<th>Modbus Holding Register</th>
<th>I/O Type</th>
<th>Units</th>
<th>I/O Range</th>
<th>Holding Register Value</th>
<th>Terminal Block Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gateway</td>
<td>Any Node</td>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 + (Node# × 16)</td>
<td>Discrete IN 1</td>
<td>-</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2 + (Node# × 16)</td>
<td>Discrete IN 2</td>
<td>-</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3 + (Node# × 16)</td>
<td>Thermocouple IN 1</td>
<td>°F/°C</td>
<td>-1638.3</td>
<td>+1638.4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4 + (Node# × 16)</td>
<td>Thermocouple IN 2</td>
<td>°F/°C</td>
<td>-1638.3</td>
<td>+1638.4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5 + (Node# × 16)</td>
<td>Thermocouple IN 3</td>
<td>°F/°C</td>
<td>-1638.3</td>
<td>+1638.4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6 + (Node# × 16)</td>
<td>Thermistor IN</td>
<td>°F/°C</td>
<td>-1638.3</td>
<td>+1638.4</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7 + (Node# × 16)</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8 + (Node# × 16)</td>
<td>Device Message</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15 + (Node# × 16)</td>
<td>Control Message</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16 + (Node# × 16)</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In high resolution mode, the temperature = (Modbus register value) ÷ 20. In low resolution mode, the temperature is (Modbus register value) ÷ 2.

Temperature values are stored as signed values in the Modbus register. A 0 in the register is interpreted as 0°; and 65535 in the register (0xFFFF) is interpreted as −1 ÷ 20 = −0.05° in high resolution mode and −1 ÷ 2 = −0.5° in low resolution mode.

Assembly

Follow these steps to assemble your DX99...D Metal Housing with Dome Antenna model. The DX99 unit ships as a complete unit, including the radio core, housing, and integrated battery. One terminal header is also included in the shipment. To unpack and wire the unit:

![Figure 1. Installing the Battery and Terminal Header](image-url)
Step 1. Open the end with the glass window (5) and gently lift the radio core unit (4) and the space frame it sits on up. The core unit connects to the space frame using two pins and the radio core is connected to the wiring board with a ribbon cable.

Step 2. Disconnect the ribbon cable from the radio.

Step 3. Insert the battery (2) into the battery holder, verifying the position and negative poles of the battery are positioned according to the markings on the board.

Step 4. Install the terminal header (3) onto the terminal pins.

Step 5. Insert your sensor wires through a cable gland and one of the two 1/2-inch NPT ports. Wire the sensor wires into the terminal header (3) according to the control drawings, p/n 141513. Use a cable gland certified for your region and environment. For a waterproof seal, refer to the waterproofing instructions in Banner document 132607.

Figure 2. Installing and Connecting the Antenna

Step 6. To install the dome antenna (2), thread the antenna cable through the 1/2-inch NPT port and screw the dome antenna to the 1/2-inch NPT port.

Step 7. Connect the antenna cable (3) to the radio unit’s antenna connector (5). (You may need to separate the space frame from the radio to do this.)

Step 8. Gently install the ribbon cable (4) into the ribbon cable pins (6), verifying the ribbon cable is seated on both rows of pins.

Step 9. Reconnect the space frame (not shown) to the radio core unit.

Step 10. Place the radio unit into the housing and gently push down until the spacer frame pin holes rest on the edge of the metal housing.

Figure 3. Final Assembly

Step 11. Close the metal cover firmly and lock closed using the set screw.

Installing or Replacing the Battery (DX99...D Models)

To install or replace the lithium "D" cell battery in the metal housings, follow these steps.

1. Unscrew the lid of the metal enclosure.
2. Lift the radio out of the metal enclosure and pull the spacer frame off the back side of the radio.
3. Disconnect the radio by unplugging the ribbon cable from the radio board and set aside the radio and spacer frame.
4. If you are replacing an existing battery, remove the discharged battery.
5. Insert a new battery. Only use a 3.6 V lithium battery from Xeno, model number XL-205F.
6. Verify the battery's positive and negative terminals align to the positive and negative terminals of the battery holder mounted within the case. Caution: There is a risk of explosion if the battery is replaced incorrectly.
7. Wait two minutes.
8. Insert the ribbon cable through the center of the spacer frame, then plug the ribbon cable back into the radio board.
9. Insert the radio back onto the spacer frame pins. Push the radio and spacer frame assembly back into the enclosure until it is seated.
10. Screw on the lid and tighten.
11. After replacing the battery, allow up to 60 seconds for the device to power up.
12. Properly dispose of your used battery according to local regulations by taking it to a hazardous waste collection site, an e-waste disposal center, or other facility qualified to accept lithium batteries.

As with all batteries, these are a fire, explosion, and severe burn hazard. Do not burn or expose them to high temperatures. Do not recharge, crush, disassemble, or expose the contents to water.

The battery may be replaced in explosive gas atmospheres. Replacement battery model number: BWA-BATT-001. For pricing and availability, contact Banner Engineering.

WARNING:
- Do not replace battery when an explosive dust atmosphere may be present.
- The replacement battery MUST be a Banner approved battery, model number BWA-BATT-001. Use of a different battery will VOID the intrinsic safety rating of this device and may result in an explosion!
- When replacing the battery, the negative end of the battery holder is the side by the large capacitors. This side is marked with a minus (−) sign.
- Do not attempt to recharge the battery. These batteries are not rechargeable. Recharging may cause serious injury to personnel or damage the equipment. Replace only with factory recommended batteries.

Specifications

Radio Range
- 900 MHz, 150 mW: Up to 4.8 km (3 miles)
- 2.4 GHz, 65 mW: Up to 3.2 km (2 miles)

Minimum Separation Distance
- 900 MHz, 150 mW and 250 mW: 2 m (6 ft)
- 2.4 GHz, 65 mW: 0.3 m (1 ft)

Transmit Power
- 900 MHz, 150 mW: 21 dBm (150 mW) conducted
- 2.4 GHz, 65 mW: 18 dBm (65 mW) conducted, less than or equal to 20 dBm (100 mW) EIRP

900 MHz Compliance
- FCC ID TGUDX80 - This device complies with FCC Part 15, Subpart C, 15.247
- IC: 7044A-DX8009

2.4 GHz Compliance
- FCC ID UE300DX80-2400 - This device complies with FCC Part 15, Subpart C, 15.247
- ETSI EN 300 328 V1.8.1 (2012-06)
- IC: 7044A-DX8024

Supply Voltage
- 3.6 V dc low power option from an internal battery

Power Consumption
- Consumption: Application dependant

Housing
- Glass and cast aluminium w/ chromating and chemically resistant paint (outside only)

Antenna Connection
- Ext. Reverse Polarity SMA, 50 Ohms
- Max Tightening Torque: 0.45 N·m (4 lbf·in)

Interface
- Two bi-color LED indicators, Two buttons, Six character LCD

Wiring Access
- Two 1/2-inch NPT ports, one 3/4-inch NPT port (internal threads)

Spread Spectrum Technology
- FHSS (Frequency Hopping Spread Spectrum)

Link Timeout
- Gateway: Configurable via User Configuration Tool (UCT) software
- Node: Defined by Gateway

8. Radio range is with the 2 dB antenna that ships with the product. High-gain antennas are available, but the range depends on the environment and line of sight. Always verify your wireless network's range by performing a Site Survey.
Thermocouple Inputs
Sample Rate: 1 second
Report Rate: 16 seconds
Accuracy: 0.1% of full scale reading + 0.8 °C
Resolution: 0.1 °C, 24-bit A/D converter

Thermistor Input (used for CJC)
Model: BWA- THERMISTOR-001
Accuracy: 0.4 °C (10 °C to 50 °C); Up to 0.8 °C (−40 °C to 85 °C)
Resolution: 0.1 °C, 24-bit A/D converter

Environmental Rating²
IEC IP68
Operating Conditions³
−40 °C to +65 °C (−40 °F to +149 °F) (Electronics); −20 °C to +80 °C (−4 °F to +176 °F) (LCD)
95% maximum relative humidity (non-condensing)
Radiated Immunity: 10 V/m (EN 61000-4-3)

Shock and Vibration
IEC 68-2-6 and IEC 68-2-27
Shock: 30g, 11 millisecond half sine wave, 18 shocks
Vibration: 0.5 mm p-p, 10 to 60 Hz

Discrete Inputs
Rating: See control drawing
Sample Rate: 1 second
Report Rate: On change of state

Discrete Input ON Condition
PNP: Greater than 8 V
NPN: Less than 0.7 V

Discrete Input OFF Condition (DX99 Models)
PNP: Less than 4.5 V
NPN: Greater than 2.2 V or open

Certifications
CSA: Class I, Division 1, Groups A, B, C, D; Class II, Division 1, Groups E, F, G; Class III, Division 1 (Ex ia IIC T4 / AEx ia IIC T4) Certificate: 2008243
LCIE/ATEX: Zone 0 (Category 1G) and 20 (Category 1D), Temperature Class T4 (II 1 GD / Ex ia IIC T4 Ga / Ex ia IIIC T82°C Da IP68) Certificate: LCIE 08 ATEX 6098 X

Special Conditions for Safe Use imposed by Intrinsic Safety Certificate LCIE 08 ATEX 6098 X: Ambient temperature range is −40 to 70 °C. Sure Cross’ DX99 FlexPower devices can only be connected to Intrinsically Safe certified equipment or simple apparatus as defined by EN 60079-11. All connected equipment must comply with the Entity Parameters (Safety Parameters) listed in the Control Drawings: (p/n 141513). The device must only use a lithium battery manufactured by XENO, type XL-205F.

Metal Housing Dimensions

Refer to the Sure Cross’ Wireless I/O Networks Instruction Manual (p/n 132607) for installation and waterproofing instructions.

Operating the devices at the maximum operating conditions for extended periods can shorten the life of the device.
Accessories

Metal Housing Accessories

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
</table>
| BWA-9O2-001 | Dome antenna
2 dBi, 18-inch cable, 1/2” SS NPT
Port, 900 MHz |
| BWA-9O2-002 | Dome antenna
2 dBi, 18-inch cable, 3/4” SS NPT
Port, 900 MHz |
| BWA-2O2-001 | Dome antenna
2 dBi, 18-inch cable, 1/2” SS NPT
Port, 2.4 GHz |
| BWA-2O2-002 | Dome antenna
2 dBi, 18-inch cable, 3/4” SS NPT
Port, 2.4 GHz |
| BWA-HW-016 | Antenna Feedthrough, Stainless Steel
1/2” NPT |
| BWA-HW-017 | Antenna Feedthrough, Stainless Steel
3/4” NPT |
| BWA-HW-012 | DX99 Antenna Extension Pack
M4-0.7 × 20 black steel pan head screw
Flexible antenna cable 12” SMA male to SMA female |
| BWA-HW-037 | Clear plastic retaining ring for DX99 metal housings
Qty: 10 |

Thermistor Probes

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
</table>
| BWA-THERMISTOR-PROBE-001 | Temperature sensor with thermistor PS103G2
Beta Value(K) 0 ~50°C: 3575
Base thermistor accuracy of 0.2%
Operating Temperature Range: -20 °C to +105 °C
Maximum Power Rating: 30 mW at 25 °C; derated to 1 mW at 125 °C
Dissipation Constant: 1 mW/°C
Plated nickel finish; PVC insulation |

Included with Device (Metal Housing)

The following items ship with the metal housings.

- BWA-9O2-C (900 MHz) or BWA-2O2-C (2.4 GHz): Antenna, 2 dBi Omni, Rubber Swivel RP-SMA Male. (Not included with Internal antenna models)
- BWA-HW-025: Cable pack, Flexible antenna cable, terminal strip
Warnings

Install and properly ground a qualified surge suppressor when installing a remote antenna system. Remote antenna configurations installed without surge suppressors invalidate the manufacturer’s warranty. Keep the ground wire as short as possible and make all ground connections to a single-point ground system to ensure no ground loops are created. No surge suppressor can absorb all lightning strikes; do not touch the Sure Cross® device or any equipment connected to the Sure Cross device during a thunderstorm.

Exporting Sure Cross® Radios. It is our intent to fully comply with all national and regional regulations regarding radio frequency emissions. Customers who want to re-export this product to a country other than that to which it was sold must ensure the device is approved in the destination country. A list of approved countries appears in the Radio Certifications section of the product manual. The Sure Cross wireless products were certified for use in these countries using the antenna that ships with the product. When using other antennas, verify you are not exceeding the transmit power levels allowed by local governing agencies. Consult with Banner Engineering Corp. if the destination country is not on this list.

Banner Engineering Corp. Limited Warranty

Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper application or installation of the Banner product.

THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS OR IMPLIED (INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE), AND WHETHER ARISING UNDER COURSE OF PERFORMANCE, COURSE OF DEALING OR TRADE USAGE.

This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGINEERING CORP. BE LIABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSSES, LOSS OF PROFITS, OR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES RESULTING FROM ANY PRODUCT DEFECT OR FROM THE USE OR INABILITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLIGENCE, OR OTHERWISE.

Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp. Any misuse, abuse, or improper application or installation of this product or use of the product for personal protection applications when the product is identified as not intended for such purposes will void the product warranty. Any modifications to this product without prior express approval by Banner Engineering Corp will void the product warranties. All specifications published in this document are subject to change; Banner reserves the right to modify product specifications or update documentation at any time.

Specifications and product information in English supersede that which is provided in any other language. For the most recent version of any documentation, refer to: