DATASHEET

Visible laser beam for diffuse sensing
Available with Class 1 or long-range Class 2 laser
Excellent optical performance throughout sensing range, even close up
Easy-to-set Expert-style TEACH options including Static, Dynamic, and Single-Point programming plus manual adjustment for fine-tuning
Easy-to-read operating status indicators, with 8-segment bargraph display
Bipolar discrete outputs, PNP, and NPN
Selectable 30 millisecond OFF-delay
Models available with 2 m or 9 m (6.5 ft or 30 ft) cable or integral quick-disconnect
Compact housing, mounting versatility – popular 30 mm threaded nose or side-mount

WARNING: Not To Be Used For Personnel Protection

Never use this device as a sensing device for personnel protection. Doing so could lead to serious injury or death. This device does not include the self-checking redundant circuitry necessary to allow its use in personnel safety applications. A sensor failure or malfunction can cause either an energized or de-energized sensor output condition.

MODELS

<table>
<thead>
<tr>
<th>Models</th>
<th>Laser Class</th>
<th>Range</th>
<th>Spot Size at Focus</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>QS30LD</td>
<td>Class 1</td>
<td>400 mm (16 in)</td>
<td>Approx. 1 mm at 400 mm (0.039 in at 16 in)</td>
<td>2 m (6.5 ft) unterminated 5-wire cable</td>
</tr>
<tr>
<td>QS30LDQ</td>
<td>Class 1</td>
<td>400 mm (16 in)</td>
<td>Approx. 1 mm at 400 mm (0.039 in at 16 in)</td>
<td>Integral 5-pin M12/Euro-style male quick disconnect (QD)</td>
</tr>
<tr>
<td>QS30LDL</td>
<td>Class 2</td>
<td>800 mm (32 in)</td>
<td>Approx. 1 mm at 800 mm (0.039 in at 32 in)</td>
<td>2 m (6.5 ft) unterminated 5-wire cable</td>
</tr>
<tr>
<td>QS30LDLQ</td>
<td>Class 2</td>
<td>800 mm (32 in)</td>
<td>Approx. 1 mm at 800 mm (0.039 in at 32 in)</td>
<td>Integral 5-pin M12/Euro-style male quick disconnect (QD)</td>
</tr>
</tbody>
</table>

QS30 Laser Diffuse Overview

The QS30 is an easy-to-use, high-performance laser sensor whose many configuration options make it suitable for demanding applications. It provides high-performance sensing in low-contrast applications at relatively long range. It features static, dynamic and single-point TEACH-mode programming, in addition to manual fine adjustment, remote programming and security lockout options. A SETUP mode also may be used to change the sensor’s output response.

The sensor features two identically configured outputs, one each NPN and PNP. The sensor’s compact housing has a large, easy-to-see bar graph display plus bright LEDs for easy programming and status monitoring during operation. The sensor can be side-mounted, using its integral mounting holes, or front-mounted, via its 30 mm threaded barrel.

1 U.S. Patent #5,808,296
2 To order the 9 m (30 ft) cable models, add the suffix "W/30" to the model number of any cabled sensor (for example, QS30LD W/30). A model with a QD connector requires a mating cable.
Description of Laser Classes

Class 1 Lasers

Class 1 lasers are lasers that are safe under reasonably foreseeable conditions of operation, including the use of optical instruments for intrabeam viewing.

Reference IEC 60825-1:2001, Section 8.2.

Class 2 Lasers

Class 2 lasers are lasers that emit visible radiation in the wavelength range from 400 nm to 700 nm, where eye protection is normally afforded by aversion responses, including the blink reflex. This reaction may be expected to provide adequate protection under reasonably foreseeable conditions of operation, including the use of optical instruments for intrabeam viewing.

Reference IEC 60825-1:2001, Section 8.2.

Class 2 Laser Safety Notes

Low-power lasers are, by definition, incapable of causing eye injury within the duration of a blink (aversion response) of 0.25 seconds. They also must emit only visible wavelengths (400 to 700 nm). Therefore, an ocular hazard may exist only if individuals overcome their natural aversion to bright light and stare directly into the laser beam.

For Safe Laser Use (Class 1 or Class 2):

- Do not stare at the laser.
- Do not point the laser at a person’s eye.
- Mount open laser beam paths either above or below eye level, where practical.
- Terminate the beam emitted by the laser product at the end of its useful path.

CAUTION: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure. Do not attempt to disassemble this sensor for repair. A defective unit must be returned to the manufacturer.

Sensor Configuration

Configure the sensor configuration by using the TEACH or Set options, plus Setup mode.

After TEACH or Set have defined the sensing parameters, use the Setup mode to enable the delay or to change the Light Operate/Dark Operate status.

Use the Manual Adjust to fine-tune the thresholds. Two push buttons, Dynamic (+) and Static (-), or the remote wire, may be used to access and set the parameters.

Sensor configuration options include:

- Two-Point Static TEACH: a single switching threshold, determined by two taught conditions.
- Dynamic (on-the-fly) TEACH: a single switching threshold, determined by multiple sampled conditions.
- Window Set: a sensing window, centered on a single sensing condition.
- Light Set and Dark Set: a single switching threshold, offset from a single sensing condition.

Remote Configuration

The remote function can be used to configure the sensor remotely or to disable the push button for security. Connect the gray wire of the sensor to ground (0 V dc), with a remote programming switch connected between them. Pulse the remote line according to the diagrams in the configuration procedures. The length of the individual programming pulses is equal to the value T where: 0.04 seconds ≤ “T” ≤ 0.8 seconds

Returning to Run Mode

Configuration modes each may be exited either after the 60-second time-out or by exiting the process in one of the two following ways:

- In static TEACH or SET modes, press and hold the Static (-) button (or hold the remote line) for 2 seconds. The sensor returns to Run mode without saving any new settings.
In SETUP mode, press and hold both the Static (-) and Dynamic (+) buttons (or hold the remote line) for 2 seconds. The sensor returns to Run mode and saves the current setting.

Two-Point Static TEACH (Threshold)

- Sets a single switching threshold (switching point)
- Threshold position is adjustable using “+” and “-” buttons (Manual Adjust).
- Recommended for applications where two conditions can be presented by the user.

Two-Point TEACH is the traditional configuration method. The sensor locates a single sensing threshold (switch point) midway between the two taught conditions, with the Output ON condition on one side and the Output OFF condition on the other.

The first condition taught is the ON condition. The Output ON and OFF conditions can be reversed by changing Light/Dark Operate status in Setup Mode.

Two-Point TEACH and Manual Adjust

Using Manual Adjust with Two-Point TEACH moves the switching threshold position. The lighted LED on the bar graph moves to exhibit the received signal, relative to the threshold.

<table>
<thead>
<tr>
<th>Bargraph LED (Following TEACH)</th>
<th>Relative Signal Difference/Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 to 8</td>
<td>Excellent: Very stable operation.</td>
</tr>
<tr>
<td>4 to 5</td>
<td>Good: Minor variables will not affect sensing reliability.</td>
</tr>
<tr>
<td>2 to 3</td>
<td>Low: Minor sensing variables may affect sensing reliability.</td>
</tr>
<tr>
<td>1</td>
<td>Unreliable: Consider an alternate sensing scheme.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Push Button</th>
<th>Remote Line</th>
<th>Result</th>
</tr>
</thead>
</table>
| Access TEACH Mode| Press and hold Static (-) button for more than 2 seconds | No action required; sensor is ready for 1st TEACH condition. | Power LED: OFF
Output LED: ON
Bar graph: #5 and 6 flash |
| TEACH Output ON Condition | Present Output ON condition and click the Static (-) button | Present Output ON condition and single-pulse the remote line | Power LED: OFF
Output LED: OFF
Bar graph: #5 and 6 flash |
| TEACH Output OFF Condition | Present Output OFF condition and click the Static (-) button | Present Output OFF condition and single-pulse the remote line | TEACH Accepted
Power LED: ON
Bar graph: One LED flashes to show relative contrast (good signal difference shown; see table above)
Sensor returns to RUN mode |
| | | | TEACH Unacceptable
Power LED: OFF
Bar graph: #1, 3 and 6, 8 flash to show failure
Sensor returns to “TEACH Output ON Condition” |
Dynamic TEACH and Adaptive Thresholds

- Teach on-the-fly
- Sets a single switching threshold (switching point)
- Threshold position is adjustable using “+” and “-” buttons (Manual Adjust)
- Recommended for applications where a machine or process may not be stopped for teaching.

Dynamic TEACH is a variation of two-point TEACH. It programs the sensor during actual machine run conditions, taking multiple samples of the light and dark conditions and automatically setting the threshold at the optimum level.

Dynamic TEACH activates the sensor’s adaptive threshold system, which continuously tracks minimum and maximum signal levels, and automatically maintains centering of the threshold between the light and dark conditions. The adaptive threshold system remains in effect during Run mode. The adaptive routine saves to non-volatile memory at least once per hour.

When Dynamic TEACH mode is used, the output ON state (Light or Dark Operate) will remain as it was last programmed. To change the output ON state, use Setup Mode.

The sensing threshold may be adjusted (fine-tuned) whenever the sensor is in RUN mode by clicking the “+” and “-” buttons. However, when a manual adjustment is made, the adaptive threshold system is disabled (cancelled).

<table>
<thead>
<tr>
<th>Bar Graph LED (Following TEACH)</th>
<th>Relative Signal Difference/Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 to 8</td>
<td>Excellent: Very stable operation.</td>
</tr>
<tr>
<td>4 to 5</td>
<td>Good: Minor variables will not affect sensing reliability.</td>
</tr>
<tr>
<td>2 to 3</td>
<td>Low: Minor sensing variables may affect sensing reliability.</td>
</tr>
<tr>
<td>1</td>
<td>Unreliable: Consider an alternate sensing scheme.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Push Button</th>
<th>Remote Line</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Dynamic TEACH Mode</td>
<td>Press and hold Dynamic (+) push button for more than 2 seconds</td>
<td>Hold the remote line low (to ground) for more than 2 seconds</td>
</tr>
<tr>
<td>TEACH Sensing Conditions</td>
<td>Continue to hold push button (+) and present the Output ON and OFF conditions</td>
<td>Continue to hold remote line low (to ground) and present the Output ON and OFF conditions</td>
</tr>
<tr>
<td>Return to Run Mode</td>
<td>Release push button (+)</td>
<td>Release the remote line/switch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Single-Point Window Set

- Sets a single ON condition
- All other conditions (lighter or darker) result in OFF output
- Sensing window size (sensitivity) is adjustable using “+” and “-” buttons (Manual Adjust)

Single-Point TEACH is most useful when a product may not always appear in the same place or when other signals may appear. Single-Point TEACH programs a sensing window, with the Output ON condition inside the window, and the Output OFF conditions outside the window. Output ON and OFF conditions can be reversed by changing Light/Dark Operate status in SETUP mode.

Single-Point TEACH programming may be accomplished only using Static TEACH. The sensor learns a single sensing condition, and adds switching thresholds above and below the taught condition to create a sensing window.

Single-Point Window Set and Manual Adjust

Using Manual Adjust with Single-Point Window Set expands or contracts the size of the window. The lighted LEDs on the light bar separate to a greater or lesser extent to exhibit the relative sensing window size.

<table>
<thead>
<tr>
<th>Push Button</th>
<th>Remote Line</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press and hold Static (-) push button for more than 2 seconds</td>
<td>Present the output ON condition and single-pulse the remote line</td>
<td>Power LED: OFF</td>
</tr>
<tr>
<td>Press and hold Static (-) push button for more than 2 seconds</td>
<td>Present the output ON condition and single-pulse the remote line</td>
<td>Output LED: ON (Push Button)</td>
</tr>
<tr>
<td>Press and hold Static (-) push button for more than 2 seconds</td>
<td>Present the output ON condition and single-pulse the remote line</td>
<td>Output LED: OFF (Remote)</td>
</tr>
<tr>
<td>Press and hold Static (-) push button for more than 2 seconds</td>
<td>Present the output ON condition and double-click the Static (-) push button</td>
<td>Bar graph: #5 and 6 flash</td>
</tr>
<tr>
<td>Press and hold Static (-) push button for more than 2 seconds</td>
<td>Present the output ON condition and double-click the Static (-) push button</td>
<td>TEACH Accepted</td>
</tr>
<tr>
<td>Press and hold Static (-) push button for more than 2 seconds</td>
<td>Present the output ON condition and double-click the Static (-) push button</td>
<td>Power LED: ON</td>
</tr>
<tr>
<td>Press and hold Static (-) push button for more than 2 seconds</td>
<td>Present the output ON condition and double-click the Static (-) push button</td>
<td>Bar graph: #3, 6 flash together to show single-point TEACH</td>
</tr>
<tr>
<td>Press and hold Static (-) push button for more than 2 seconds</td>
<td>Present the output ON condition and double-click the Static (-) push button</td>
<td>Sensor returns to RUN mode with new settings</td>
</tr>
<tr>
<td>Press and hold Static (-) push button for more than 2 seconds</td>
<td>Present the output ON condition and double-click the Static (-) push button</td>
<td>TEACH Unacceptable</td>
</tr>
<tr>
<td>Press and hold Static (-) push button for more than 2 seconds</td>
<td>Present the output ON condition and double-click the Static (-) push button</td>
<td>Power LED: OFF</td>
</tr>
<tr>
<td>Press and hold Static (-) push button for more than 2 seconds</td>
<td>Present the output ON condition and double-click the Static (-) push button</td>
<td>Bar graph: #1, 3 and 6, 8 flash to show failure, then 5 and 6 flash</td>
</tr>
<tr>
<td>Press and hold Static (-) push button for more than 2 seconds</td>
<td>Present the output ON condition and double-click the Static (-) push button</td>
<td>Sensor waits for valid TEACH condition</td>
</tr>
</tbody>
</table>

Single-Point Light Set

- Sets a threshold slightly below the taught condition.
- Any condition darker than the threshold condition causes the output to change state.
- Threshold position is adjustable using the “+” and “-” buttons (Manual Adjust).
- Recommended for applications where only one condition is known, for example a stable light background with varying darker targets.

A single sensing condition is presented, and the sensor positions a threshold below the presented condition. When a condition darker than the threshold is sensed, the output either turns ON or OFF, depending on the Light/Dark Operate setting (see Setup Mode on page 7).

Light Set and Light/Dark Operate Selection

In Light Operate mode, Light Set teaches the Output ON condition. In Dark Operate mode, Light Set teaches the Output OFF condition.
Single-Point Dark Set

- Sets a threshold slightly above the taught condition.
- Any condition lighter than the threshold condition causes the output to change state.
- Threshold position is adjustable using the “+” and “-” buttons (Manual Adjust).
- Recommended for applications where only one condition is known, for example a stable dark background with varying lighter targets.

A single sensing condition is presented, and the sensor positions a threshold above the taught condition. When a condition lighter than the threshold is sensed, the output either turns ON or OFF, depending on the Light/Dark Operate setting (see *Setup Mode* on page 7).

Dark Set and Light/Dark Operate Selection

In Light Operate mode, Dark Set teaches the Output OFF condition. In Dark Operate mode, Dark Set teaches the Output ON condition.

<table>
<thead>
<tr>
<th>Access Set Mode</th>
<th>Set Sensing Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push Button</td>
<td>Remote Line</td>
</tr>
<tr>
<td>0.04 seconds ≤ “Click” ≤ 0.8 seconds</td>
<td>0.04 seconds ≤ T ≤ 0.8 seconds</td>
</tr>
<tr>
<td>Press and hold the Static (-) push button for more than 2 seconds</td>
<td>Single-pulse remote line</td>
</tr>
<tr>
<td>Result</td>
<td>Power LED: OFF</td>
</tr>
<tr>
<td></td>
<td>Output LED: ON (Push Button)</td>
</tr>
<tr>
<td></td>
<td>Output LED: OFF (Remote)</td>
</tr>
<tr>
<td></td>
<td>Bar graph: #5 and 6 alternately flash</td>
</tr>
<tr>
<td>Threshold Condition Accepted</td>
<td>Threshold Condition Unacceptable</td>
</tr>
<tr>
<td>Power LED: ON</td>
<td>Power LED: OFF</td>
</tr>
<tr>
<td>Bar graph: Indicators #5–8 flash together to show that the threshold condition is accepted</td>
<td>Bar graph: #1, 3 and 5, 7 alternately flash to show failure</td>
</tr>
<tr>
<td>Sensor returns to RUN mode with new settings</td>
<td>Sensor returns to “SET Sensing Condition”</td>
</tr>
</tbody>
</table>
Setup Mode

SETUP mode is used to change sensor output response for:
- Light or dark operate
- 30-millisecond pulse stretcher (OFF delay), if required.

The status LEDs, active only during Setup mode, indicate the output response configuration when the sensor is in Run mode. Four combinations are possible:
- Light Operate, No Delay
- Dark Operate, No Delay
- Dark Operate, 30 ms Delay
- Light Operate, 30 ms Delay

To access SETUP mode and change the output response settings:
1. Press and hold BOTH push buttons (or double-pulse Remote line) until the green LED indicator turns OFF.
2. Click EITHER push button (or pulse Remote line) to toggle through the four possible setting combinations.
3. Press and hold both push buttons (or hold Remote line) until the green LED indicator turns ON, indicating return to RUN mode.

NOTE:
- If Setup mode programming is interrupted and remains inactive for 60 seconds, the sensor returns to Run mode with the most recent settings (i.e., exits and saves current selection).
- Setup mode operates in the “background”, while the outputs are active.

Manual Adjust

Manual adjust is used during Run mode via the push buttons only. Its behavior depends on whether a switching threshold or sensing window is used.

Switching Threshold (Static TEACH, Dynamic TEACH, Light Set, and Dark Set):
- Fine-tunes sensing threshold set-point value
- Press “+” to increase; press “-” to decrease

Sensing Window (Window Set):
- Adjusts sensing window size
- Press “+” to increase; press “-” to decrease

The lighted bar graph LEDs move to reflect the increase or decrease.

Push Button Disable

In addition to its programming function, Remote Programming may be used to disable the push buttons for security. Disabling the push buttons prevents undesired tampering with the programming settings. Connect the gray wire of the sensor as described and four-pulse to enable or disable the push buttons.

Reset to Factory Defaults

To reset the sensor back to its factory default settings, eight-pulse the remote input wire.

Where \(T\) is: \(0.04 \text{ seconds} \leq T \leq 0.8 \text{ seconds}\).
Specifications

Supply Voltage

10 to 30 V dc (10% maximum ripple at 10% duty cycle) at 35 mA maximum current, exclusive of load

Supply Protection Circuitry

Protected against reverse polarity and transient over voltages

Laser Classification

Class 1 or Class 2, depending on model

Output Configuration

Bipolar: 1 current sourcing (PNP) and 1 current sinking (NPN)
Rating: 150 mA maximum load
OFF-state saturation voltage: NPN: < 1.0 V at 150 mA load; PNP: < 2.0 V at 150 mA load

Output Protection Circuitry

Protected against output short-circuit and continuous overload

Output Response Time

500 microseconds

Indicators

- 8-segment red bar graph: Signal strength relative to switch-point
- Green LED: Power ON
- Amber LED: Output conducting

Sensing Beam

- Class 1 Laser: Visible red, 650 nm
- Class 2 Laser: Visible red, 658 nm

Beam Size at Aperture

Approximately 2 mm

Delay at Power Up

1 second maximum; outputs do not conduct during this time

Repeatability

70 microseconds

Adjustments

- 2 push buttons and remote wire
- Expert Teach programming (two-point static, dynamic, window set, light set, dark set)
- Manually adjust (+/-) thresholds (from buttons only)
- LO/DO and OFF-delay configuration options
- Push-button lockout (from remote wire only)
- Reset to factory defaults (from remote wire only)

Factory Default Settings

- Maximum gain
- Single threshold set at midpoint range
- Light operate
- No delays

Construction

ABS housing; acrylic lens cover

Connections

5-conductor 2 m (6.5 ft) PVC cable, 9 m (30 ft) PVC cable, or 5-pin integral M12/Euro-style male quick-disconnect fitting

Environmental Rating

IEC IP67; NEMA 6

Operating Conditions

-10 °C to +50 °C (+14 °F to 122 °F)
95% at +50 °C maximum relative humidity (non-condensing)

Vibration and Mechanical Shock

All models meet Mil. Std. 202F requirements. Method 201A (Vibration: 10 to 60Hz max. double amplitude 0.06 in, maximum acceleration 10G). Also meets IEC 947-5-2 requirements: 30G, 11 ms duration, half sine wave.

Certifications

![CE Mark](image)

![UL Mark](image)

![US LISTED Mark](image)

Required Overcurrent Protection

WARNING: Electrical connections must be made by qualified personnel in accordance with local and national electrical codes and regulations.

Overcurrent protection is required to be provided by end product application per the supplied table.
Overcurrent protection may be provided with external fusing or via Current Limiting, Class 2 Power Supply.
Supply wiring leads < 24 AWG shall not be spliced.
For additional product support, go to www.bannerengineering.com.

<table>
<thead>
<tr>
<th>Supply Wiring (AWG)</th>
<th>Required Overcurrent Protection (Amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5.0</td>
</tr>
<tr>
<td>22</td>
<td>3.0</td>
</tr>
<tr>
<td>24</td>
<td>2.0</td>
</tr>
<tr>
<td>26</td>
<td>1.0</td>
</tr>
<tr>
<td>28</td>
<td>0.8</td>
</tr>
<tr>
<td>30</td>
<td>0.5</td>
</tr>
</tbody>
</table>

www.bannerengineering.com - Tel: +1-763-544-3164

P/N 109027 Rev. E
Dimensions

Hardware Included: (2) M3 × 0.5 × 28 stainless steel machine screws, nuts, and washers

Performance Curves

<table>
<thead>
<tr>
<th>Class 1 Laser Models</th>
<th>Class 2 Laser Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mm</td>
<td>6 mm</td>
</tr>
<tr>
<td>4 mm</td>
<td>4 mm</td>
</tr>
<tr>
<td>2 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Q530
Diffuse Mode

DISTANCE

QS30
Diffuse Mode

DISTANCE

www.bannerengineering.com - Tel: +1-763-544-3164
Class 1 Laser Models	Class 2 Laser Models

Wiring Diagrams

Cabled Models
- Brown
- Blue
- White
- Black
- Gray
- +10-30 V dc
- 150 mA maximum load
- Remote TEACH

QD Models
- Brown
- Blue
- White
- Black
- Gray
- +10-30 V dc
- 150 mA maximum load
- Remote TEACH

Accessories

Quick-Disconnect Cables

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Style</th>
<th>Dimensions</th>
<th>Pinout (Female)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQDC1-501.5</td>
<td>0.50 m (1.5 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQDC1-506</td>
<td>1.83 m (6 ft)</td>
<td>Straight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQDC1-515</td>
<td>4.57 m (15 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQDC1-530</td>
<td>9.14 m (30 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MQDC1-501.5 - 5 Pin Threaded M12/Euro-Style Cordsets—Single Ended

1 = Brown
2 = White
3 = Blue
4 = Black
5 = Gray
5-Pin Threaded M12/Euro-Style Cordsets—Single Ended

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Style</th>
<th>Dimensions</th>
<th>Pinout (Female)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQDC1-506RA</td>
<td>1.83 m (6 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQDC1-515RA</td>
<td>4.57 m (15 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQDC1-530RA</td>
<td>9.14 m (30 ft)</td>
<td>Right-Angle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brackets

SMB30SC
- Swivel bracket with 30 mm mounting hole for sensor
- Black reinforced thermoplastic polyester
- Stainless steel mounting and swivel locking hardware included

Hole center spacing: A=ø 50.8
Hole size: A=ø 7.0, B=ø 30.0

SMBQS30L
- Right-angle bracket for cable sensor models
- Clearance for M4 (#8) hardware
- ± 12° tilt adjustment
- 14-ga. stainless steel

Hole center spacing: A to B=35.0
Hole size: A=ø 4.3, B=ø 4.25x16.3

SMBQS30LT
- Tall right-angle bracket for QD models
- ± 8° tilt adjustment
- 14-ga. stainless steel

Hole center spacing: A to B=35.0
Hole size: A=ø 4.3, B=ø 4.25x16.3

SMB30MM
- 12-ga. stainless steel bracket with curved mounting slots for versatile orientation
- Clearance for M6 (¼ in) hardware
- Mounting hole for 30 mm sensor

Hole center spacing: A = 51, A to B = 25.4
Hole size: A = 42.6 x 7, B = ø 6.4, C = ø 30.1

SMB30A
- Right-angle bracket with curved slot for versatile orientation
- Clearance for M6 (¼ in) hardware
- Mounting hole for 30 mm sensor
- 12-ga. stainless steel

Hole center spacing: A to B=40
Hole size: A=ø 6.3, B= 27.1 x 6.3, C=ø 30.5

All measurements are listed in millimeters, unless noted otherwise.
Banner Engineering Corp. Limited Warranty

Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper application or installation of the Banner product.

THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS OR IMPLIED (INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE), AND WHETHER ARISING UNDER COURSE OF PERFORMANCE, COURSE OF DEALING OR TRADE USAGE.

This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGINEERING CORP. BE LIABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSSES, LOSS OF PROFITS, OR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES RESULTING FROM ANY PRODUCT DEFECT OR FROM THE USE OR INABILITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLIGENCE, OR OTHERWISE.

Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp. Any misuse, abuse, or improper application or installation of this product or use of the product for personal protection applications when the product is identified as not intended for such purposes will void the product warranty. Any modifications to this product without prior express approval by Banner Engineering Corp will void the product warranties. All specifications published in this document are subject to change; Banner reserves the right to modify product specifications or update documentation at any time. Specifications and product information in English supersede that which is provided in any other language. For the most recent version of any documentation, refer to: www.bannerengineering.com.